Does the Vulnerability Threaten Our Projects? Automated Vulnerable API Detection for Third-Party Libraries

Developers usually use third-party libraries (TPLs) to facilitate the development of their projects to avoid reinventing the wheels, however, the vulnerable TPLs indeed cause severe security threats. The majority of existing research only considered whether projects used vulnerable TPLs but neglecte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on software engineering 2024-11, Vol.50 (11), p.2906-2920
Hauptverfasser: Zhang, Fangyuan, Fan, Lingling, Chen, Sen, Cai, Miaoying, Xu, Sihan, Zhao, Lida
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Developers usually use third-party libraries (TPLs) to facilitate the development of their projects to avoid reinventing the wheels, however, the vulnerable TPLs indeed cause severe security threats. The majority of existing research only considered whether projects used vulnerable TPLs but neglected whether the vulnerable code of the TPLs was indeed used by the projects, which inevitably results in false positives and further requires additional patching efforts and maintenance costs (e.g., dependency conflict issues after version upgrades). To mitigate such a problem, we propose VAScanner , which can effectively identify vulnerable root methods causing vulnerabilities in TPLs and further identify all vulnerable APIs of TPLs used by Java projects. Specifically, we first collect the initial patch methods from the patch commits and extract accurate patch methods by employing a patch-unrelated sifting mechanism, then we further identify the vulnerable root methods for each vulnerability by employing an augmentation mechanism. Based on them, we leverage backward call graph analysis to identify all vulnerable APIs for each vulnerable TPL version and construct a database consisting of 90,749 (2,410,779 with library versions) vulnerable APIswith 1.45% false positive proportion with a 95% confidence interval (CI) of [1.31%, 1.59%] from 362 TPLs with 14,775 versions. The database serves as a reference database to help developers detect vulnerable APIs of TPLs used by projects. Our experiments show VAScanner eliminates 5.78% false positives and 2.16% false negatives owing to the proposed sifting and augmentation mechanisms. Besides, it outperforms the state-of-the-art method-level vulnerability detection tool in analyzing direct dependencies, Eclipse Steady, achieving more effective detection of vulnerable APIs. Furthermore, to investigate the real impact of vulnerabilities on real open-source projects, we exploit VAScanner to conduct a large-scale analysis on 3,147 projects that depend on vulnerable TPLs, and find only 21.51% of projects (with 1.83% false positive proportion and a 95% CI of [0.71%, 4.61%]) were threatened through vulnerable APIs, demonstrating that VAScanner can potentially reduce false positives significantly.
ISSN:0098-5589
1939-3520
DOI:10.1109/TSE.2024.3454960