Exploiting the Essential Assumptions of Analogy-Based Effort Estimation
Background: There are too many design options for software effort estimators. How can we best explore them all? Aim: We seek aspects on general principles of effort estimation that can guide the design of effort estimators. Method: We identified the essential assumption of analogy-based effort estim...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on software engineering 2012-03, Vol.38 (2), p.425-438 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background: There are too many design options for software effort estimators. How can we best explore them all? Aim: We seek aspects on general principles of effort estimation that can guide the design of effort estimators. Method: We identified the essential assumption of analogy-based effort estimation, i.e., the immediate neighbors of a project offer stable conclusions about that project. We test that assumption by generating a binary tree of clusters of effort data and comparing the variance of supertrees versus smaller subtrees. Results: For 10 data sets (from Coc81, Nasa93, Desharnais, Albrecht, ISBSG, and data from Turkish companies), we found: 1) The estimation variance of cluster subtrees is usually larger than that of cluster supertrees; 2) if analogy is restricted to the cluster trees with lower variance, then effort estimates have a significantly lower error (measured using MRE, AR, and Pred(25) with a Wilcoxon test, 95 percent confidence, compared to nearest neighbor methods that use neighborhoods of a fixed size). Conclusion: Estimation by analogy can be significantly improved by a dynamic selection of nearest neighbors, using only the project data from regions with small variance. |
---|---|
ISSN: | 0098-5589 1939-3520 |
DOI: | 10.1109/TSE.2011.27 |