A Fast Plastic Scintillator for Low Intensity Proton Beam Monitoring
In the context of particle therapy monitoring, we are developing a gamma-ray detector to determine the ion range in vivo from the measurement of particle time-of-flight. For this application, a beam monitor capable to tag in time the incident ion with a time resolution below 235 ps FWHM (100 ps rms)...
Gespeichert in:
Veröffentlicht in: | IEEE Transactions on Radiation and Plasma Medical Sciences 2024, p.1-1 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the context of particle therapy monitoring, we are developing a gamma-ray detector to determine the ion range in vivo from the measurement of particle time-of-flight. For this application, a beam monitor capable to tag in time the incident ion with a time resolution below 235 ps FWHM (100 ps rms) is required to provide a start signal for the acquisition. We have therefore developed a dedicated detector based on a fast organic scintillator (EJ-204) of 25 ×25 ×1 mm3 coupled to four SiPM strips that allow measuring the particle incident position by scintillation light sharing. The prototype was characterised with single protons of energies between 63 and 225 MeV at the MEDICYC and ProteusONE facilities of the Antoine Lacassagne proton therapy centre in Nice. We obtained a time resolution of 120 ps FWHM at 63 MeV, and a spatial resolution of 2 mm rms for single particles. Two identical detectors also allowed to measure the MEDICYC proton energy with 0.3% accuracy. |
---|---|
ISSN: | 2469-7311 2469-7303 |
DOI: | 10.1109/TRPMS.2024.3498959 |