Evaluation of a Fused Sonomyography and Electromyography-Based Control on a Cable-Driven Ankle Exoskeleton

This article presents an assist-as-needed (AAN) control framework for exoskeleton assistance based on human volitional effort prediction via a Hill-type neuromuscular model. A sequential processing algorithm-based multirate observer is applied to continuously estimate muscle activation levels by fus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on robotics 2023-06, Vol.39 (3), p.1-20
Hauptverfasser: Zhang, Qiang, Lambeth, Krysten, Sun, Ziyue, Dodson, Albert, Bao, Xuefeng, Sharma, Nitin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article presents an assist-as-needed (AAN) control framework for exoskeleton assistance based on human volitional effort prediction via a Hill-type neuromuscular model. A sequential processing algorithm-based multirate observer is applied to continuously estimate muscle activation levels by fusing surface electromyography (sEMG) and ultrasound (US) echogenicity signals from the ankle muscles. An adaptive impedance controller manipulates the exoskeleton's impedance for a more natural behavior by following a desired intrinsic impedance model. Two neural networks provide robustness to uncertainties in the overall ankle joint-exoskeleton model and the prediction error in the volitional ankle joint torque. A rigorous Lyapunov-based stability analysis proves that the AAN control framework achieves uniformly ultimately bounded tracking for the overall system. Experimental studies on five participants with no neurological disabilities walking on a treadmill validate the effectiveness of the designed ankle exoskeleton and the proposed AAN approach. Results illustrate that the AAN control approach with fused sEMG and US echogenicity signals maintained a higher human volitional effort prediction accuracy, less ankle joint trajectory tracking error, and less robotic assistance torque than the AAN approach with the sEMG-based volitional effort prediction alone. The findings support our hypotheses that the proposed controller increases human motion intent prediction accuracy, improves the exoskeleton's control performance, and boosts voluntary participation from human subjects. The new framework potentially paves a foundation for using multimodal biological signals to control rehabilitative or assistive robots.
ISSN:1552-3098
1941-0468
DOI:10.1109/TRO.2023.3236958