Flagellate Underwater Robotics at Macroscale: Design, Modeling, and Characterization

Prokaryotic flagellum is considered as the only known example of a biological "wheel," a system capable of converting the action of rotatory actuator into a continuous propulsive force. For this reason, flagella are an interesting case study in soft robotics and they represent an appealing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on robotics 2022-04, Vol.38 (2), p.731-747
Hauptverfasser: Armanini, Costanza, Farman, Madiha, Calisti, Marcello, Giorgio-Serchi, Francesco, Stefanini, Cesare, Renda, Federico
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Prokaryotic flagellum is considered as the only known example of a biological "wheel," a system capable of converting the action of rotatory actuator into a continuous propulsive force. For this reason, flagella are an interesting case study in soft robotics and they represent an appealing source of inspiration for the design of underwater robots. A great number of flagellum-inspired devices exists, but these are all characterized by a size ranging in the micrometer scale and mostly realized with rigid materials. Here, we present the design and development of a novel generation of macroscale underwater propellers that draw their inspiration from flagellated organisms. Through a simple rotatory actuation and exploiting the capability of the soft material to store energy when interacting with the surrounding fluid, the propellers attain different helical shapes that generate a propulsive thrust. A theoretical model is presented, accurately describing and predicting the kinematic and the propulsive capabilities of the proposed solution. Different experimental trials are presented to validate the accuracy of the model and to investigate the performance of the proposed design. Finally, an underwater robot prototype propelled by four flagellar modules is presented.
ISSN:1552-3098
1941-0468
DOI:10.1109/TRO.2021.3094051