Memory Unscented Particle Filter for 6-DOF Tactile Localization

This paper addresses 6-DOF (degree-of-freedom) tactile localization, i.e., the pose estimation of tridimensional objects using tactile measurements. This estimation problem is fundamental for the operation of autonomous robots that are often required to manipulate and grasp objects whose pose is a p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on robotics 2017-10, Vol.33 (5), p.1139-1155
Hauptverfasser: Vezzani, Giulia, Pattacini, Ugo, Battistelli, Giorgio, Chisci, Luigi, Natale, Lorenzo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper addresses 6-DOF (degree-of-freedom) tactile localization, i.e., the pose estimation of tridimensional objects using tactile measurements. This estimation problem is fundamental for the operation of autonomous robots that are often required to manipulate and grasp objects whose pose is a priori unknown. The nature of tactile measurements, the strict time requirements for real-time operation, and the multimodality of the involved probability distributions pose remarkable challenges and call for advanced nonlinear filtering techniques. Following a Bayesian approach, this paper proposes a novel and effective algorithm, named memory unscented particle filter (MUPF), which solves 6-DOF localization recursively in real time by only exploiting contact point measurements. The MUPF combines a modified particle filter that incorporates a sliding memory of past measurements to better handle multimodal distributions, along with the unscented Kalman filter that moves the particles toward regions of the search space that are more likely with the measurements. The performance of the proposed MUPF algorithm has been assessed both in simulation and on a real robotic system equipped with tactile sensors (i.e., the iCub humanoid robot). The experiments show that the algorithm provides accurate and reliable localization even with a low number of particles and, hence, is compatible with real-time requirements.
ISSN:1552-3098
1941-0468
DOI:10.1109/TRO.2017.2707092