On \Delta-Transforms

Any set of two legs in a Gough-Stewart platform sharing an attachment is defined as a Delta component. This component links a point in the platform (base) to a line in the base (platform). Thus, if the two legs, which are involved in a Delta component, are rearranged without altering the location of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on robotics 2009-12, Vol.25 (6), p.1225-1236
Hauptverfasser: Borras, J., Thomas, F., Torras, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Any set of two legs in a Gough-Stewart platform sharing an attachment is defined as a Delta component. This component links a point in the platform (base) to a line in the base (platform). Thus, if the two legs, which are involved in a Delta component, are rearranged without altering the location of the line and the point in their base and platform local reference frames, the singularity locus of the Gough-Stewart platform remains the same, provided that no architectural singularities are introduced. Such leg rearrangements are defined as Delta-transforms, and they can be applied sequentially and simultaneously. Although it may seem counterintuitive at first glance, the rearrangement of legs using simultaneous Delta-transforms does not necessarily lead to leg configurations containing a Delta component. As a consequence, the application of Delta-transforms reveals itself as a simple, yet powerful, technique for the kinematic analysis of large families of Gough-Stewart platforms. It is also shown that these transforms shed new light on the characterization of architectural singularities and their associated self-motions.
ISSN:1552-3098
1941-0468
DOI:10.1109/TRO.2009.2032956