Qubit Reduction and Quantum Speedup for Wireless Channel Assignment Problem

In this article, we propose a novel method of formulating an NP-hard wireless channel assignment problem as a higher-order unconstrained binary optimization (HUBO), where the Grover adaptive search (GAS) is used to provide a quadratic speedup for solving the problem. The conventional method relies o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on quantum engineering 2023, Vol.4, p.1-12
Hauptverfasser: Sano, Yuki, Norimoto, Masaya, Ishikawa, Naoki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we propose a novel method of formulating an NP-hard wireless channel assignment problem as a higher-order unconstrained binary optimization (HUBO), where the Grover adaptive search (GAS) is used to provide a quadratic speedup for solving the problem. The conventional method relies on a one-hot encoding of the channel indices, resulting in a quadratic formulation. By contrast, we conceive ascending and descending binary encodings of the channel indices, construct a specific quantum circuit, and derive the exact numbers of qubits and gates required by GAS. Our analysis clarifies that the proposed HUBO formulation significantly reduces the number of qubits and the query complexity compared with the conventional quadratic formulation. This advantage is achieved at the cost of an increased number of quantum gates, which we demonstrate can be reduced by our proposed descending binary encoding.
ISSN:2689-1808
2689-1808
DOI:10.1109/TQE.2023.3293452