Resilience-Oriented DG Siting and Sizing Considering Stochastic Scenario Reduction
In this paper, a fuel-based distributed generator (DG) allocation strategy is proposed to enhance the distribution system resilience against extreme weather. The long-term planning problem is formulated as a two-stage stochastic mixed-integer programming (SMIP). The first stage is to make decisions...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power systems 2021-07, Vol.36 (4), p.3715-3727 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a fuel-based distributed generator (DG) allocation strategy is proposed to enhance the distribution system resilience against extreme weather. The long-term planning problem is formulated as a two-stage stochastic mixed-integer programming (SMIP). The first stage is to make decisions of DG siting and sizing under the given budget constraint. In the second stage, a post-extreme-event-restoration (PEER) is employed to minimize the operating cost in an uncertain fault scenario. In particular, this study proposes a method to select the most representative scenarios for the SMIP. First, a Monte Carlo Simulation (MCS) is introduced to generate sufficient scenarios considering random fault locations and load profiles. Then, the number of scenarios is reduced by the K-means clustering algorithm. The advantage of scenario reduction is to make a trade-off between accuracy and computational efficiency. Finally, the SMIP is solved by the progressive hedging algorithm. The case studies of the IEEE 33-bus and 123-bus test systems demonstrate the effectiveness of the proposed algorithm in reducing the expected energy not served (EENS), which is a critical criterion of resilience. |
---|---|
ISSN: | 0885-8950 1558-0679 |
DOI: | 10.1109/TPWRS.2020.3043874 |