Multi-Period Active Distribution Network Planning Using Multi-Stage Stochastic Programming and Nested Decomposition by SDDIP

This paper presents a multi-period active distribution network planning (ADNP) with distributed generation (DG). The objective of the proposed ADNP is to minimize the total planning cost, subject to both investment and operation constraints. The paper proposes a multi-stage stochastic optimization m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2021-05, Vol.36 (3), p.2281-2292
Hauptverfasser: Ding, Tao, Qu, Ming, Huang, Can, Wang, Zekai, Du, Pengwei, Shahidehpour, Mohammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a multi-period active distribution network planning (ADNP) with distributed generation (DG). The objective of the proposed ADNP is to minimize the total planning cost, subject to both investment and operation constraints. The paper proposes a multi-stage stochastic optimization model to address DG uncertainties over several periods, in which the decisions are made sequentially by only using the present-stage information. A nested decomposition method is proposed which applies the stochastic dual dynamic integer programming (SDDIP) method to address computational intractabilities of the proposed ADNP approach. The presented numerical results and discussions on a 33-bus distribution system and a large-scale 906-bus system verify the effectiveness of the proposed ADNP method and its solution method.
ISSN:0885-8950
1558-0679
DOI:10.1109/TPWRS.2020.3032830