Two-Level Parallel Augmented Schur Complement Interior-Point Algorithms for the Solution of Security Constrained Optimal Power Flow Problems

Modern power grids incorporate renewable energy at an increased pace, placing greater stress on the power grid equipment and shifting their operational conditions towards their limits. As a result, failures of any network component, such as a transmission line or power generator, can be critical to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2020-03, Vol.35 (2), p.1340-1350
Hauptverfasser: Kardos, Juraj, Kourounis, Drosos, Schenk, Olaf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1350
container_issue 2
container_start_page 1340
container_title IEEE transactions on power systems
container_volume 35
creator Kardos, Juraj
Kourounis, Drosos
Schenk, Olaf
description Modern power grids incorporate renewable energy at an increased pace, placing greater stress on the power grid equipment and shifting their operational conditions towards their limits. As a result, failures of any network component, such as a transmission line or power generator, can be critical to the overall grid operation. The security constrained optimal power flow (SCOPF) aims for the long term precontingency operating state, such that in the event of any contingency, the power grid will remain secure. For a realistic power network, however, with numerous contingencies considered, the overall problem size becomes intractable for single-core optimization tools in short time frames established by real-time industrial operations. We propose a parallel distributed memory structure exploiting framework, BELTISTOS-SC, which accelerates the solution of SCOPF problems over state of the art techniques. The acceleration on single-core execution is achieved by a structure-exploiting interior point method, employing successive Schur complement evaluations to further reduce the size of the systems solved at each iteration while maintaining sparsity, resulting in lower computational resources for the linear system solution. Additionally the parallel, distributed memory implementation of the proposed framework is also presented in detail and validated through several large-scale examples, demonstrating its efficiency for large-scale SCOPF problems.
doi_str_mv 10.1109/TPWRS.2019.2942964
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPWRS_2019_2942964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8846109</ieee_id><sourcerecordid>2359904733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-49385f5a9227a3bbafc8f14d89b913e90f473a059ca0845df3281dd2bd57e0843</originalsourceid><addsrcrecordid>eNo9kN9KwzAYxYMoOKcvoDcBrzvzp2mTyzGcDgYrduJlSdtk60ibmbSOvYMPbebEqyTn-37nhAPAPUYTjJF4Wmcfb_mEICwmRMREJPEFGGHGeISSVFyCEeKcRVwwdA1uvN8hhJIwGIHv9cFGS_WlDMykk8aEy3TYtKrrVQ3zajs4OLPt3qiTBBdBdo11UWab8JyajXVNv2091NbBfqtgbs3QN7aDVsNcVUMYH4ND53snmy54rvZ908oQZw_KwbmxB5g5W4YAfwuutDRe3f2dY_A-f17PXqPl6mUxmy6jigjWR7GgnGkmBSGppGUpdcU1jmsuSoGpEkjHKZWIiUoiHrNaU8JxXZOyZqkKCh2Dx7Pv3tnPQfm-2NnBdSGyIJQJgQJPwxY5b1XOeu-ULvYu_NwdC4yKU-vFb-vFqfXir_UAPZyhRin1D3AeJwGgP9iJgOo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2359904733</pqid></control><display><type>article</type><title>Two-Level Parallel Augmented Schur Complement Interior-Point Algorithms for the Solution of Security Constrained Optimal Power Flow Problems</title><source>IEEE Electronic Library (IEL)</source><creator>Kardos, Juraj ; Kourounis, Drosos ; Schenk, Olaf</creator><creatorcontrib>Kardos, Juraj ; Kourounis, Drosos ; Schenk, Olaf</creatorcontrib><description>Modern power grids incorporate renewable energy at an increased pace, placing greater stress on the power grid equipment and shifting their operational conditions towards their limits. As a result, failures of any network component, such as a transmission line or power generator, can be critical to the overall grid operation. The security constrained optimal power flow (SCOPF) aims for the long term precontingency operating state, such that in the event of any contingency, the power grid will remain secure. For a realistic power network, however, with numerous contingencies considered, the overall problem size becomes intractable for single-core optimization tools in short time frames established by real-time industrial operations. We propose a parallel distributed memory structure exploiting framework, BELTISTOS-SC, which accelerates the solution of SCOPF problems over state of the art techniques. The acceleration on single-core execution is achieved by a structure-exploiting interior point method, employing successive Schur complement evaluations to further reduce the size of the systems solved at each iteration while maintaining sparsity, resulting in lower computational resources for the linear system solution. Additionally the parallel, distributed memory implementation of the proposed framework is also presented in detail and validated through several large-scale examples, demonstrating its efficiency for large-scale SCOPF problems.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2019.2942964</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acceleration ; Algorithms ; Contingency ; Distributed memory ; Electric power grids ; Generators ; interior point method ; Iterative methods ; Linear programming ; non-linear programming ; optimal power flow ; Optimization ; parallel algorithms ; Power flow ; Power grids ; Power transmission lines ; Real time operation ; Security ; Security constraints ; Transmission lines</subject><ispartof>IEEE transactions on power systems, 2020-03, Vol.35 (2), p.1340-1350</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-49385f5a9227a3bbafc8f14d89b913e90f473a059ca0845df3281dd2bd57e0843</citedby><cites>FETCH-LOGICAL-c295t-49385f5a9227a3bbafc8f14d89b913e90f473a059ca0845df3281dd2bd57e0843</cites><orcidid>0000-0001-8636-1023 ; 0000-0002-6490-8283 ; 0000-0002-0197-5470</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8846109$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8846109$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kardos, Juraj</creatorcontrib><creatorcontrib>Kourounis, Drosos</creatorcontrib><creatorcontrib>Schenk, Olaf</creatorcontrib><title>Two-Level Parallel Augmented Schur Complement Interior-Point Algorithms for the Solution of Security Constrained Optimal Power Flow Problems</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>Modern power grids incorporate renewable energy at an increased pace, placing greater stress on the power grid equipment and shifting their operational conditions towards their limits. As a result, failures of any network component, such as a transmission line or power generator, can be critical to the overall grid operation. The security constrained optimal power flow (SCOPF) aims for the long term precontingency operating state, such that in the event of any contingency, the power grid will remain secure. For a realistic power network, however, with numerous contingencies considered, the overall problem size becomes intractable for single-core optimization tools in short time frames established by real-time industrial operations. We propose a parallel distributed memory structure exploiting framework, BELTISTOS-SC, which accelerates the solution of SCOPF problems over state of the art techniques. The acceleration on single-core execution is achieved by a structure-exploiting interior point method, employing successive Schur complement evaluations to further reduce the size of the systems solved at each iteration while maintaining sparsity, resulting in lower computational resources for the linear system solution. Additionally the parallel, distributed memory implementation of the proposed framework is also presented in detail and validated through several large-scale examples, demonstrating its efficiency for large-scale SCOPF problems.</description><subject>Acceleration</subject><subject>Algorithms</subject><subject>Contingency</subject><subject>Distributed memory</subject><subject>Electric power grids</subject><subject>Generators</subject><subject>interior point method</subject><subject>Iterative methods</subject><subject>Linear programming</subject><subject>non-linear programming</subject><subject>optimal power flow</subject><subject>Optimization</subject><subject>parallel algorithms</subject><subject>Power flow</subject><subject>Power grids</subject><subject>Power transmission lines</subject><subject>Real time operation</subject><subject>Security</subject><subject>Security constraints</subject><subject>Transmission lines</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN9KwzAYxYMoOKcvoDcBrzvzp2mTyzGcDgYrduJlSdtk60ibmbSOvYMPbebEqyTn-37nhAPAPUYTjJF4Wmcfb_mEICwmRMREJPEFGGHGeISSVFyCEeKcRVwwdA1uvN8hhJIwGIHv9cFGS_WlDMykk8aEy3TYtKrrVQ3zajs4OLPt3qiTBBdBdo11UWab8JyajXVNv2091NbBfqtgbs3QN7aDVsNcVUMYH4ND53snmy54rvZ908oQZw_KwbmxB5g5W4YAfwuutDRe3f2dY_A-f17PXqPl6mUxmy6jigjWR7GgnGkmBSGppGUpdcU1jmsuSoGpEkjHKZWIiUoiHrNaU8JxXZOyZqkKCh2Dx7Pv3tnPQfm-2NnBdSGyIJQJgQJPwxY5b1XOeu-ULvYu_NwdC4yKU-vFb-vFqfXir_UAPZyhRin1D3AeJwGgP9iJgOo</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Kardos, Juraj</creator><creator>Kourounis, Drosos</creator><creator>Schenk, Olaf</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8636-1023</orcidid><orcidid>https://orcid.org/0000-0002-6490-8283</orcidid><orcidid>https://orcid.org/0000-0002-0197-5470</orcidid></search><sort><creationdate>202003</creationdate><title>Two-Level Parallel Augmented Schur Complement Interior-Point Algorithms for the Solution of Security Constrained Optimal Power Flow Problems</title><author>Kardos, Juraj ; Kourounis, Drosos ; Schenk, Olaf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-49385f5a9227a3bbafc8f14d89b913e90f473a059ca0845df3281dd2bd57e0843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acceleration</topic><topic>Algorithms</topic><topic>Contingency</topic><topic>Distributed memory</topic><topic>Electric power grids</topic><topic>Generators</topic><topic>interior point method</topic><topic>Iterative methods</topic><topic>Linear programming</topic><topic>non-linear programming</topic><topic>optimal power flow</topic><topic>Optimization</topic><topic>parallel algorithms</topic><topic>Power flow</topic><topic>Power grids</topic><topic>Power transmission lines</topic><topic>Real time operation</topic><topic>Security</topic><topic>Security constraints</topic><topic>Transmission lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kardos, Juraj</creatorcontrib><creatorcontrib>Kourounis, Drosos</creatorcontrib><creatorcontrib>Schenk, Olaf</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kardos, Juraj</au><au>Kourounis, Drosos</au><au>Schenk, Olaf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-Level Parallel Augmented Schur Complement Interior-Point Algorithms for the Solution of Security Constrained Optimal Power Flow Problems</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2020-03</date><risdate>2020</risdate><volume>35</volume><issue>2</issue><spage>1340</spage><epage>1350</epage><pages>1340-1350</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>Modern power grids incorporate renewable energy at an increased pace, placing greater stress on the power grid equipment and shifting their operational conditions towards their limits. As a result, failures of any network component, such as a transmission line or power generator, can be critical to the overall grid operation. The security constrained optimal power flow (SCOPF) aims for the long term precontingency operating state, such that in the event of any contingency, the power grid will remain secure. For a realistic power network, however, with numerous contingencies considered, the overall problem size becomes intractable for single-core optimization tools in short time frames established by real-time industrial operations. We propose a parallel distributed memory structure exploiting framework, BELTISTOS-SC, which accelerates the solution of SCOPF problems over state of the art techniques. The acceleration on single-core execution is achieved by a structure-exploiting interior point method, employing successive Schur complement evaluations to further reduce the size of the systems solved at each iteration while maintaining sparsity, resulting in lower computational resources for the linear system solution. Additionally the parallel, distributed memory implementation of the proposed framework is also presented in detail and validated through several large-scale examples, demonstrating its efficiency for large-scale SCOPF problems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2019.2942964</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8636-1023</orcidid><orcidid>https://orcid.org/0000-0002-6490-8283</orcidid><orcidid>https://orcid.org/0000-0002-0197-5470</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2020-03, Vol.35 (2), p.1340-1350
issn 0885-8950
1558-0679
language eng
recordid cdi_crossref_primary_10_1109_TPWRS_2019_2942964
source IEEE Electronic Library (IEL)
subjects Acceleration
Algorithms
Contingency
Distributed memory
Electric power grids
Generators
interior point method
Iterative methods
Linear programming
non-linear programming
optimal power flow
Optimization
parallel algorithms
Power flow
Power grids
Power transmission lines
Real time operation
Security
Security constraints
Transmission lines
title Two-Level Parallel Augmented Schur Complement Interior-Point Algorithms for the Solution of Security Constrained Optimal Power Flow Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A00%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-Level%20Parallel%20Augmented%20Schur%20Complement%20Interior-Point%20Algorithms%20for%20the%20Solution%20of%20Security%20Constrained%20Optimal%20Power%20Flow%20Problems&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Kardos,%20Juraj&rft.date=2020-03&rft.volume=35&rft.issue=2&rft.spage=1340&rft.epage=1350&rft.pages=1340-1350&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2019.2942964&rft_dat=%3Cproquest_RIE%3E2359904733%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2359904733&rft_id=info:pmid/&rft_ieee_id=8846109&rfr_iscdi=true