Two-Level Parallel Augmented Schur Complement Interior-Point Algorithms for the Solution of Security Constrained Optimal Power Flow Problems

Modern power grids incorporate renewable energy at an increased pace, placing greater stress on the power grid equipment and shifting their operational conditions towards their limits. As a result, failures of any network component, such as a transmission line or power generator, can be critical to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2020-03, Vol.35 (2), p.1340-1350
Hauptverfasser: Kardos, Juraj, Kourounis, Drosos, Schenk, Olaf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Modern power grids incorporate renewable energy at an increased pace, placing greater stress on the power grid equipment and shifting their operational conditions towards their limits. As a result, failures of any network component, such as a transmission line or power generator, can be critical to the overall grid operation. The security constrained optimal power flow (SCOPF) aims for the long term precontingency operating state, such that in the event of any contingency, the power grid will remain secure. For a realistic power network, however, with numerous contingencies considered, the overall problem size becomes intractable for single-core optimization tools in short time frames established by real-time industrial operations. We propose a parallel distributed memory structure exploiting framework, BELTISTOS-SC, which accelerates the solution of SCOPF problems over state of the art techniques. The acceleration on single-core execution is achieved by a structure-exploiting interior point method, employing successive Schur complement evaluations to further reduce the size of the systems solved at each iteration while maintaining sparsity, resulting in lower computational resources for the linear system solution. Additionally the parallel, distributed memory implementation of the proposed framework is also presented in detail and validated through several large-scale examples, demonstrating its efficiency for large-scale SCOPF problems.
ISSN:0885-8950
1558-0679
DOI:10.1109/TPWRS.2019.2942964