Setpoint Tracking With Partially Observed Loads

We use online convex optimization for setpoint tracking with uncertain, flexible loads. We consider full feedback from the loads, bandit feedback, and two intermediate types of feedback, partial bandit where a subset of the loads are individually observed and the rest are observed in aggregate, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2018-09, Vol.33 (5), p.5615-5627
Hauptverfasser: Lesage-Landry, Antoine, Taylor, Joshua A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We use online convex optimization for setpoint tracking with uncertain, flexible loads. We consider full feedback from the loads, bandit feedback, and two intermediate types of feedback, partial bandit where a subset of the loads are individually observed and the rest are observed in aggregate, and Bernoulli feedback where in each round the aggregator receives either full or bandit feedback according to a known probability. We give sublinear regret bounds in all cases. We numerically evaluate our algorithms on examples with thermostatically controlled loads and electric vehicles.
ISSN:0885-8950
1558-0679
DOI:10.1109/TPWRS.2018.2804353