Dynamic-Feature Extraction, Attribution, and Reconstruction (DEAR) Method for Power System Model Reduction

In interconnected power systems, dynamic model reduction can be applied to generators outside the area of interest (i.e., study area) to reduce the computational cost associated with transient stability studies. This paper presents a method of deriving the reduced dynamic model of the external area...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE Transactions on Power Systems, 29(5):2049-2059 29(5):2049-2059, 2014-09, Vol.29 (5), p.2049-2059
Hauptverfasser: Shaobu Wang, Shuai Lu, Ning Zhou, Guang Lin, Elizondo, Marcelo, Pai, M. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In interconnected power systems, dynamic model reduction can be applied to generators outside the area of interest (i.e., study area) to reduce the computational cost associated with transient stability studies. This paper presents a method of deriving the reduced dynamic model of the external area based on dynamic response measurements. The method consists of three steps, namely dynamic-feature extraction, attribution, and reconstruction (DEAR). In this method, a feature extraction technique, such as singular value decomposition (SVD), is applied to the measured generator dynamics after a disturbance. Characteristic generators are then identified in the feature attribution step for matching the extracted dynamic features with the highest similarity, forming a suboptimal "basis" of system dynamics. In the reconstruction step, generator state variables such as rotor angles and voltage magnitudes are approximated with a linear combination of the characteristic generators, resulting in a quasi-nonlinear reduced model of the original system. The network model is unchanged in the DEAR method. Tests on several IEEE standard systems show that the proposed method yields better reduction ratio and response errors than the traditional coherency based reduction methods.
ISSN:0885-8950
1558-0679
DOI:10.1109/TPWRS.2014.2301032