Comprehensive Operational Planning Framework for Self-Healing Control Actions in Smart Distribution Grids
Self-healing is a major driving force in the smart grid vision. This paper proposes a comprehensive design and operational planning framework to generate optimum self-healing control actions in a distribution system. For this purpose, a distribution system with optimally allocated distributed genera...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power systems 2013-11, Vol.28 (4), p.4192-4200 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Self-healing is a major driving force in the smart grid vision. This paper proposes a comprehensive design and operational planning framework to generate optimum self-healing control actions in a distribution system. For this purpose, a distribution system with optimally allocated distributed generators (DGs) is divided into a set of microgrids with high self-adequacy through allocation of distributed energy storage resources (DESRs) and distributed reactive sources (DRSs). Afterwards, by using the predicted load and generation of renewable-based distributed generators for the next hour of the day and other important factors (self-adequacy in the unfaulted microgrids, total distribution system's energy losses and the total supplied loads according to their requested reliability), the optimum self-healing strategy is planned for the system for all possible future faults. The IEEE 123-bus distribution system is selected as the test system; optimum microgrids are designed and several case studies are presented to demonstrate the effects of optimization coefficients on the optimum self-healing control actions. |
---|---|
ISSN: | 0885-8950 1558-0679 |
DOI: | 10.1109/TPWRS.2013.2259852 |