Distribution System State Estimation Using an Artificial Neural Network Approach for Pseudo Measurement Modeling

This paper presents an alternative approach to pseudo measurement modeling in the context of distribution system state estimation (DSSE). In the proposed approach, pseudo measurements are generated from a few real measurements using artificial neural networks (ANNs) in conjunction with typical load...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2012-11, Vol.27 (4), p.1888-1896
Hauptverfasser: Manitsas, E., Singh, R., Pal, B. C., Strbac, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents an alternative approach to pseudo measurement modeling in the context of distribution system state estimation (DSSE). In the proposed approach, pseudo measurements are generated from a few real measurements using artificial neural networks (ANNs) in conjunction with typical load profiles. The error associated with the generated pseudo measurements is made suitable for use in the weighted least squares (WLS) state estimation by decomposition into several components through the Gaussian mixture model (GMM). The effect of ANN-based pseudo measurement modeling on the quality of state estimation is demonstrated on a 95-bus section of the U.K. generic distribution system (UKGDS) model.
ISSN:0885-8950
1558-0679
DOI:10.1109/TPWRS.2012.2187804