Steady-state optimization in power systems with series FACTS devices
This paper presents an optimization-based methodology to identify key locations in the AC network where placement of a series-connected FACTS device increases the maximum megawatt power transfer the most. The models used for the thyristor-controlled series capacitor (TCSC) and unified power-flow con...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power systems 2003-02, Vol.18 (1), p.19-26 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents an optimization-based methodology to identify key locations in the AC network where placement of a series-connected FACTS device increases the maximum megawatt power transfer the most. The models used for the thyristor-controlled series capacitor (TCSC) and unified power-flow controller (UPFC) include the nonlinear constraints of voltage limitation, zero megawatt active-power exchange, voltage control, and reactive-power exchange. This article describes briefly the steady-state flexible AC transmission systems (FACTS) models and their integration in an existing optimal power-flow (OPF) software package designed and implemented by the authors. A reduced real-life network is used for the case studies. The optimization results help in evaluating the effectiveness of the series FACTS devices in maximizing the network transfer capability and deliver a measure of the FACTS ratings. |
---|---|
ISSN: | 0885-8950 1558-0679 |
DOI: | 10.1109/TPWRS.2002.807110 |