Feature Selection for Effective Health Index Diagnoses of Power Transformers
This letter investigates an approach based on feature selection and classification techniques to reduce assessment complexities of power transformers. This approach decreases the number of features by extracting the most influential ones when determining the transformers health index (HI). Several f...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power delivery 2018-12, Vol.33 (6), p.3223-3226 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3226 |
---|---|
container_issue | 6 |
container_start_page | 3223 |
container_title | IEEE transactions on power delivery |
container_volume | 33 |
creator | Benhmed, Kamel Mooman, Abdelniser Younes, Abdunnaser Shaban, Khaled El-Hag, Ayman |
description | This letter investigates an approach based on feature selection and classification techniques to reduce assessment complexities of power transformers. This approach decreases the number of features by extracting the most influential ones when determining the transformers health index (HI). Several filters and wrapper-based feature selection methods are investigated. The effectiveness of the selected features is validated through performance evaluations of various classification models. The experimental results demonstrate that water content, acidity, breakdown voltage, and FFA (Furan), are the most influential testing parameters in determining the transformer HI. |
doi_str_mv | 10.1109/TPWRD.2017.2762920 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPWRD_2017_2762920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8068213</ieee_id><sourcerecordid>2137554513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-675d42c96043c598e076b81e54b5f37932bd94671b3a7230c2f369e4b8698bb43</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKt_QDcB11Nv3slS-rCFgkUrLoeZ6Y22tJOaTH38e6e2uLocON-58BFyzaDHGLi7-ez1adDjwEyPG80dhxPSYU6YTHKwp6QD1qrMOmPOyUVKKwCQ4KBDpiMsml1E-oxrrJplqKkPkQ6936dPpGMs1s07ndQL_KaDZfFWh4SJBk9n4QsjnceiTi2ywZguyZkv1gmvjrdLXkbDeX-cTR8fJv37aVZxp5pMG7WQvHIapKiUswhGl5ahkqXywjjBy4WT2rBSFIYLqLgX2qEsrXa2LKXoktvD7jaGjx2mJl-FXazblzlnwiglFRNtix9aVQwpRfT5Ni43RfzJGeR7a_mftXxvLT9aa6GbA7RExH_AgrbtsvgFYbNnjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2137554513</pqid></control><display><type>article</type><title>Feature Selection for Effective Health Index Diagnoses of Power Transformers</title><source>IEEE Electronic Library (IEL)</source><creator>Benhmed, Kamel ; Mooman, Abdelniser ; Younes, Abdunnaser ; Shaban, Khaled ; El-Hag, Ayman</creator><creatorcontrib>Benhmed, Kamel ; Mooman, Abdelniser ; Younes, Abdunnaser ; Shaban, Khaled ; El-Hag, Ayman</creatorcontrib><description>This letter investigates an approach based on feature selection and classification techniques to reduce assessment complexities of power transformers. This approach decreases the number of features by extracting the most influential ones when determining the transformers health index (HI). Several filters and wrapper-based feature selection methods are investigated. The effectiveness of the selected features is validated through performance evaluations of various classification models. The experimental results demonstrate that water content, acidity, breakdown voltage, and FFA (Furan), are the most influential testing parameters in determining the transformer HI.</description><identifier>ISSN: 0885-8977</identifier><identifier>EISSN: 1937-4208</identifier><identifier>DOI: 10.1109/TPWRD.2017.2762920</identifier><identifier>CODEN: ITPDE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial intelligence ; Classification ; condition monitoring ; Feature extraction ; Indexes ; Moisture content ; Oil insulation ; Oils ; Power transformer insulation ; Support vector machines ; transformer ; Transformers</subject><ispartof>IEEE transactions on power delivery, 2018-12, Vol.33 (6), p.3223-3226</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-675d42c96043c598e076b81e54b5f37932bd94671b3a7230c2f369e4b8698bb43</citedby><cites>FETCH-LOGICAL-c295t-675d42c96043c598e076b81e54b5f37932bd94671b3a7230c2f369e4b8698bb43</cites><orcidid>0000-0001-6707-3472 ; 0000-0003-3270-5358 ; 0000-0002-0217-2987 ; 0000-0002-5688-7515</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8068213$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8068213$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Benhmed, Kamel</creatorcontrib><creatorcontrib>Mooman, Abdelniser</creatorcontrib><creatorcontrib>Younes, Abdunnaser</creatorcontrib><creatorcontrib>Shaban, Khaled</creatorcontrib><creatorcontrib>El-Hag, Ayman</creatorcontrib><title>Feature Selection for Effective Health Index Diagnoses of Power Transformers</title><title>IEEE transactions on power delivery</title><addtitle>TPWRD</addtitle><description>This letter investigates an approach based on feature selection and classification techniques to reduce assessment complexities of power transformers. This approach decreases the number of features by extracting the most influential ones when determining the transformers health index (HI). Several filters and wrapper-based feature selection methods are investigated. The effectiveness of the selected features is validated through performance evaluations of various classification models. The experimental results demonstrate that water content, acidity, breakdown voltage, and FFA (Furan), are the most influential testing parameters in determining the transformer HI.</description><subject>Artificial intelligence</subject><subject>Classification</subject><subject>condition monitoring</subject><subject>Feature extraction</subject><subject>Indexes</subject><subject>Moisture content</subject><subject>Oil insulation</subject><subject>Oils</subject><subject>Power transformer insulation</subject><subject>Support vector machines</subject><subject>transformer</subject><subject>Transformers</subject><issn>0885-8977</issn><issn>1937-4208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhYMoWKt_QDcB11Nv3slS-rCFgkUrLoeZ6Y22tJOaTH38e6e2uLocON-58BFyzaDHGLi7-ez1adDjwEyPG80dhxPSYU6YTHKwp6QD1qrMOmPOyUVKKwCQ4KBDpiMsml1E-oxrrJplqKkPkQ6936dPpGMs1s07ndQL_KaDZfFWh4SJBk9n4QsjnceiTi2ywZguyZkv1gmvjrdLXkbDeX-cTR8fJv37aVZxp5pMG7WQvHIapKiUswhGl5ahkqXywjjBy4WT2rBSFIYLqLgX2qEsrXa2LKXoktvD7jaGjx2mJl-FXazblzlnwiglFRNtix9aVQwpRfT5Ni43RfzJGeR7a_mftXxvLT9aa6GbA7RExH_AgrbtsvgFYbNnjw</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Benhmed, Kamel</creator><creator>Mooman, Abdelniser</creator><creator>Younes, Abdunnaser</creator><creator>Shaban, Khaled</creator><creator>El-Hag, Ayman</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6707-3472</orcidid><orcidid>https://orcid.org/0000-0003-3270-5358</orcidid><orcidid>https://orcid.org/0000-0002-0217-2987</orcidid><orcidid>https://orcid.org/0000-0002-5688-7515</orcidid></search><sort><creationdate>20181201</creationdate><title>Feature Selection for Effective Health Index Diagnoses of Power Transformers</title><author>Benhmed, Kamel ; Mooman, Abdelniser ; Younes, Abdunnaser ; Shaban, Khaled ; El-Hag, Ayman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-675d42c96043c598e076b81e54b5f37932bd94671b3a7230c2f369e4b8698bb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial intelligence</topic><topic>Classification</topic><topic>condition monitoring</topic><topic>Feature extraction</topic><topic>Indexes</topic><topic>Moisture content</topic><topic>Oil insulation</topic><topic>Oils</topic><topic>Power transformer insulation</topic><topic>Support vector machines</topic><topic>transformer</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benhmed, Kamel</creatorcontrib><creatorcontrib>Mooman, Abdelniser</creatorcontrib><creatorcontrib>Younes, Abdunnaser</creatorcontrib><creatorcontrib>Shaban, Khaled</creatorcontrib><creatorcontrib>El-Hag, Ayman</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power delivery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Benhmed, Kamel</au><au>Mooman, Abdelniser</au><au>Younes, Abdunnaser</au><au>Shaban, Khaled</au><au>El-Hag, Ayman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature Selection for Effective Health Index Diagnoses of Power Transformers</atitle><jtitle>IEEE transactions on power delivery</jtitle><stitle>TPWRD</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>33</volume><issue>6</issue><spage>3223</spage><epage>3226</epage><pages>3223-3226</pages><issn>0885-8977</issn><eissn>1937-4208</eissn><coden>ITPDE5</coden><abstract>This letter investigates an approach based on feature selection and classification techniques to reduce assessment complexities of power transformers. This approach decreases the number of features by extracting the most influential ones when determining the transformers health index (HI). Several filters and wrapper-based feature selection methods are investigated. The effectiveness of the selected features is validated through performance evaluations of various classification models. The experimental results demonstrate that water content, acidity, breakdown voltage, and FFA (Furan), are the most influential testing parameters in determining the transformer HI.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRD.2017.2762920</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-6707-3472</orcidid><orcidid>https://orcid.org/0000-0003-3270-5358</orcidid><orcidid>https://orcid.org/0000-0002-0217-2987</orcidid><orcidid>https://orcid.org/0000-0002-5688-7515</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8977 |
ispartof | IEEE transactions on power delivery, 2018-12, Vol.33 (6), p.3223-3226 |
issn | 0885-8977 1937-4208 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPWRD_2017_2762920 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial intelligence Classification condition monitoring Feature extraction Indexes Moisture content Oil insulation Oils Power transformer insulation Support vector machines transformer Transformers |
title | Feature Selection for Effective Health Index Diagnoses of Power Transformers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A16%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20Selection%20for%20Effective%20Health%20Index%20Diagnoses%20of%20Power%20Transformers&rft.jtitle=IEEE%20transactions%20on%20power%20delivery&rft.au=Benhmed,%20Kamel&rft.date=2018-12-01&rft.volume=33&rft.issue=6&rft.spage=3223&rft.epage=3226&rft.pages=3223-3226&rft.issn=0885-8977&rft.eissn=1937-4208&rft.coden=ITPDE5&rft_id=info:doi/10.1109/TPWRD.2017.2762920&rft_dat=%3Cproquest_RIE%3E2137554513%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2137554513&rft_id=info:pmid/&rft_ieee_id=8068213&rfr_iscdi=true |