Feature Selection for Effective Health Index Diagnoses of Power Transformers

This letter investigates an approach based on feature selection and classification techniques to reduce assessment complexities of power transformers. This approach decreases the number of features by extracting the most influential ones when determining the transformers health index (HI). Several f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power delivery 2018-12, Vol.33 (6), p.3223-3226
Hauptverfasser: Benhmed, Kamel, Mooman, Abdelniser, Younes, Abdunnaser, Shaban, Khaled, El-Hag, Ayman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3226
container_issue 6
container_start_page 3223
container_title IEEE transactions on power delivery
container_volume 33
creator Benhmed, Kamel
Mooman, Abdelniser
Younes, Abdunnaser
Shaban, Khaled
El-Hag, Ayman
description This letter investigates an approach based on feature selection and classification techniques to reduce assessment complexities of power transformers. This approach decreases the number of features by extracting the most influential ones when determining the transformers health index (HI). Several filters and wrapper-based feature selection methods are investigated. The effectiveness of the selected features is validated through performance evaluations of various classification models. The experimental results demonstrate that water content, acidity, breakdown voltage, and FFA (Furan), are the most influential testing parameters in determining the transformer HI.
doi_str_mv 10.1109/TPWRD.2017.2762920
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPWRD_2017_2762920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8068213</ieee_id><sourcerecordid>2137554513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-675d42c96043c598e076b81e54b5f37932bd94671b3a7230c2f369e4b8698bb43</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKt_QDcB11Nv3slS-rCFgkUrLoeZ6Y22tJOaTH38e6e2uLocON-58BFyzaDHGLi7-ez1adDjwEyPG80dhxPSYU6YTHKwp6QD1qrMOmPOyUVKKwCQ4KBDpiMsml1E-oxrrJplqKkPkQ6936dPpGMs1s07ndQL_KaDZfFWh4SJBk9n4QsjnceiTi2ywZguyZkv1gmvjrdLXkbDeX-cTR8fJv37aVZxp5pMG7WQvHIapKiUswhGl5ahkqXywjjBy4WT2rBSFIYLqLgX2qEsrXa2LKXoktvD7jaGjx2mJl-FXazblzlnwiglFRNtix9aVQwpRfT5Ni43RfzJGeR7a_mftXxvLT9aa6GbA7RExH_AgrbtsvgFYbNnjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2137554513</pqid></control><display><type>article</type><title>Feature Selection for Effective Health Index Diagnoses of Power Transformers</title><source>IEEE Electronic Library (IEL)</source><creator>Benhmed, Kamel ; Mooman, Abdelniser ; Younes, Abdunnaser ; Shaban, Khaled ; El-Hag, Ayman</creator><creatorcontrib>Benhmed, Kamel ; Mooman, Abdelniser ; Younes, Abdunnaser ; Shaban, Khaled ; El-Hag, Ayman</creatorcontrib><description>This letter investigates an approach based on feature selection and classification techniques to reduce assessment complexities of power transformers. This approach decreases the number of features by extracting the most influential ones when determining the transformers health index (HI). Several filters and wrapper-based feature selection methods are investigated. The effectiveness of the selected features is validated through performance evaluations of various classification models. The experimental results demonstrate that water content, acidity, breakdown voltage, and FFA (Furan), are the most influential testing parameters in determining the transformer HI.</description><identifier>ISSN: 0885-8977</identifier><identifier>EISSN: 1937-4208</identifier><identifier>DOI: 10.1109/TPWRD.2017.2762920</identifier><identifier>CODEN: ITPDE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial intelligence ; Classification ; condition monitoring ; Feature extraction ; Indexes ; Moisture content ; Oil insulation ; Oils ; Power transformer insulation ; Support vector machines ; transformer ; Transformers</subject><ispartof>IEEE transactions on power delivery, 2018-12, Vol.33 (6), p.3223-3226</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-675d42c96043c598e076b81e54b5f37932bd94671b3a7230c2f369e4b8698bb43</citedby><cites>FETCH-LOGICAL-c295t-675d42c96043c598e076b81e54b5f37932bd94671b3a7230c2f369e4b8698bb43</cites><orcidid>0000-0001-6707-3472 ; 0000-0003-3270-5358 ; 0000-0002-0217-2987 ; 0000-0002-5688-7515</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8068213$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8068213$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Benhmed, Kamel</creatorcontrib><creatorcontrib>Mooman, Abdelniser</creatorcontrib><creatorcontrib>Younes, Abdunnaser</creatorcontrib><creatorcontrib>Shaban, Khaled</creatorcontrib><creatorcontrib>El-Hag, Ayman</creatorcontrib><title>Feature Selection for Effective Health Index Diagnoses of Power Transformers</title><title>IEEE transactions on power delivery</title><addtitle>TPWRD</addtitle><description>This letter investigates an approach based on feature selection and classification techniques to reduce assessment complexities of power transformers. This approach decreases the number of features by extracting the most influential ones when determining the transformers health index (HI). Several filters and wrapper-based feature selection methods are investigated. The effectiveness of the selected features is validated through performance evaluations of various classification models. The experimental results demonstrate that water content, acidity, breakdown voltage, and FFA (Furan), are the most influential testing parameters in determining the transformer HI.</description><subject>Artificial intelligence</subject><subject>Classification</subject><subject>condition monitoring</subject><subject>Feature extraction</subject><subject>Indexes</subject><subject>Moisture content</subject><subject>Oil insulation</subject><subject>Oils</subject><subject>Power transformer insulation</subject><subject>Support vector machines</subject><subject>transformer</subject><subject>Transformers</subject><issn>0885-8977</issn><issn>1937-4208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhYMoWKt_QDcB11Nv3slS-rCFgkUrLoeZ6Y22tJOaTH38e6e2uLocON-58BFyzaDHGLi7-ez1adDjwEyPG80dhxPSYU6YTHKwp6QD1qrMOmPOyUVKKwCQ4KBDpiMsml1E-oxrrJplqKkPkQ6936dPpGMs1s07ndQL_KaDZfFWh4SJBk9n4QsjnceiTi2ywZguyZkv1gmvjrdLXkbDeX-cTR8fJv37aVZxp5pMG7WQvHIapKiUswhGl5ahkqXywjjBy4WT2rBSFIYLqLgX2qEsrXa2LKXoktvD7jaGjx2mJl-FXazblzlnwiglFRNtix9aVQwpRfT5Ni43RfzJGeR7a_mftXxvLT9aa6GbA7RExH_AgrbtsvgFYbNnjw</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Benhmed, Kamel</creator><creator>Mooman, Abdelniser</creator><creator>Younes, Abdunnaser</creator><creator>Shaban, Khaled</creator><creator>El-Hag, Ayman</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6707-3472</orcidid><orcidid>https://orcid.org/0000-0003-3270-5358</orcidid><orcidid>https://orcid.org/0000-0002-0217-2987</orcidid><orcidid>https://orcid.org/0000-0002-5688-7515</orcidid></search><sort><creationdate>20181201</creationdate><title>Feature Selection for Effective Health Index Diagnoses of Power Transformers</title><author>Benhmed, Kamel ; Mooman, Abdelniser ; Younes, Abdunnaser ; Shaban, Khaled ; El-Hag, Ayman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-675d42c96043c598e076b81e54b5f37932bd94671b3a7230c2f369e4b8698bb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial intelligence</topic><topic>Classification</topic><topic>condition monitoring</topic><topic>Feature extraction</topic><topic>Indexes</topic><topic>Moisture content</topic><topic>Oil insulation</topic><topic>Oils</topic><topic>Power transformer insulation</topic><topic>Support vector machines</topic><topic>transformer</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benhmed, Kamel</creatorcontrib><creatorcontrib>Mooman, Abdelniser</creatorcontrib><creatorcontrib>Younes, Abdunnaser</creatorcontrib><creatorcontrib>Shaban, Khaled</creatorcontrib><creatorcontrib>El-Hag, Ayman</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power delivery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Benhmed, Kamel</au><au>Mooman, Abdelniser</au><au>Younes, Abdunnaser</au><au>Shaban, Khaled</au><au>El-Hag, Ayman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature Selection for Effective Health Index Diagnoses of Power Transformers</atitle><jtitle>IEEE transactions on power delivery</jtitle><stitle>TPWRD</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>33</volume><issue>6</issue><spage>3223</spage><epage>3226</epage><pages>3223-3226</pages><issn>0885-8977</issn><eissn>1937-4208</eissn><coden>ITPDE5</coden><abstract>This letter investigates an approach based on feature selection and classification techniques to reduce assessment complexities of power transformers. This approach decreases the number of features by extracting the most influential ones when determining the transformers health index (HI). Several filters and wrapper-based feature selection methods are investigated. The effectiveness of the selected features is validated through performance evaluations of various classification models. The experimental results demonstrate that water content, acidity, breakdown voltage, and FFA (Furan), are the most influential testing parameters in determining the transformer HI.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRD.2017.2762920</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-6707-3472</orcidid><orcidid>https://orcid.org/0000-0003-3270-5358</orcidid><orcidid>https://orcid.org/0000-0002-0217-2987</orcidid><orcidid>https://orcid.org/0000-0002-5688-7515</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8977
ispartof IEEE transactions on power delivery, 2018-12, Vol.33 (6), p.3223-3226
issn 0885-8977
1937-4208
language eng
recordid cdi_crossref_primary_10_1109_TPWRD_2017_2762920
source IEEE Electronic Library (IEL)
subjects Artificial intelligence
Classification
condition monitoring
Feature extraction
Indexes
Moisture content
Oil insulation
Oils
Power transformer insulation
Support vector machines
transformer
Transformers
title Feature Selection for Effective Health Index Diagnoses of Power Transformers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A16%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20Selection%20for%20Effective%20Health%20Index%20Diagnoses%20of%20Power%20Transformers&rft.jtitle=IEEE%20transactions%20on%20power%20delivery&rft.au=Benhmed,%20Kamel&rft.date=2018-12-01&rft.volume=33&rft.issue=6&rft.spage=3223&rft.epage=3226&rft.pages=3223-3226&rft.issn=0885-8977&rft.eissn=1937-4208&rft.coden=ITPDE5&rft_id=info:doi/10.1109/TPWRD.2017.2762920&rft_dat=%3Cproquest_RIE%3E2137554513%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2137554513&rft_id=info:pmid/&rft_ieee_id=8068213&rfr_iscdi=true