Feature Selection for Effective Health Index Diagnoses of Power Transformers

This letter investigates an approach based on feature selection and classification techniques to reduce assessment complexities of power transformers. This approach decreases the number of features by extracting the most influential ones when determining the transformers health index (HI). Several f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power delivery 2018-12, Vol.33 (6), p.3223-3226
Hauptverfasser: Benhmed, Kamel, Mooman, Abdelniser, Younes, Abdunnaser, Shaban, Khaled, El-Hag, Ayman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This letter investigates an approach based on feature selection and classification techniques to reduce assessment complexities of power transformers. This approach decreases the number of features by extracting the most influential ones when determining the transformers health index (HI). Several filters and wrapper-based feature selection methods are investigated. The effectiveness of the selected features is validated through performance evaluations of various classification models. The experimental results demonstrate that water content, acidity, breakdown voltage, and FFA (Furan), are the most influential testing parameters in determining the transformer HI.
ISSN:0885-8977
1937-4208
DOI:10.1109/TPWRD.2017.2762920