Power Component Fault Detection Method and Improved Current Order Limiter Control for Commutation Failure Mitigation in HVDC
A power component detection (PCD) method and an improved current order limiter control (improved COL) are proposed to mitigate the commutation failure in a line-commutated converter-based high-voltage direct current (LCC-HVDC). Integrating the instantaneous voltage and instantaneous current characte...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power delivery 2015-06, Vol.30 (3), p.1585-1593 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A power component detection (PCD) method and an improved current order limiter control (improved COL) are proposed to mitigate the commutation failure in a line-commutated converter-based high-voltage direct current (LCC-HVDC). Integrating the instantaneous voltage and instantaneous current characteristics under single-phase and three-phase-to-ground faults, a fault detection method based on the power component is proposed, and the corresponding setting principle is presented. Then, an improved dc current order limiter is introduced. To evaluate the effectiveness of the proposed methods, a dual-infeed HVDC system is developed in PSCAD/EMTDC, and the presented methods are also implemented. The transient performances of dual-infeed HVDC, under single-phase and three-phase-to-ground faults at the inverter ac busbar of one LCC-HVDC link, are investigated. Simulation results show that the PCD method, with the voltage and current components as an additional judgment criterion, is more sensitive to detect the single-phase and three phase faults, and even more reliable than the detect method taking only voltage or current components for faults recognition. It can also be concluded that the improved COL that is integrated with the advancing firing angle control has the ability to make the LCC-HVDC less susceptible to commutation failure. Finally, the improvement of commutation process by improved COL is further demonstrated. |
---|---|
ISSN: | 0885-8977 1937-4208 |
DOI: | 10.1109/TPWRD.2015.2411997 |