Hybrid Design of Modular Multilevel Converters for HVDC Systems Based on Various Submodule Circuits

The modular multilevel converter (MMC) has become the most promising converter technology for high-voltage direct current (HVDC) transmission systems. However, similar to any other voltage-sourced converter-based HVDC system, MMC-HVDC systems with the half-bridge submodules (SMs) lack the capability...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power delivery 2015-02, Vol.30 (1), p.385-394
Hauptverfasser: Jiangchao Qin, Saeedifard, Maryam, Rockhill, Andrew, Rui Zhou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The modular multilevel converter (MMC) has become the most promising converter technology for high-voltage direct current (HVDC) transmission systems. However, similar to any other voltage-sourced converter-based HVDC system, MMC-HVDC systems with the half-bridge submodules (SMs) lack the capability of handling dc-side short-circuit faults, which are of severe concern for overhead transmission lines. In this paper, two new SM circuit configurations as well as a hybrid design methodology to embed the dc-fault-handling capability in the MMC-HVDC systems are proposed. By combining the features of various SM configurations, the dc-fault current path through the freewheeling diodes is eliminated and the dc-fault current is enforced to zero. Several MMC configurations based on the proposed hybrid design method and various SM circuits, that is, the half-bridge, the full-bridge, the clamp-double, and the five-level cross-connected SMs, as well as the newly proposed unipolar-voltage full-bridge and three-level cross-connected SMs, are investigated and compared in terms of the dc-fault-handing capability, semiconductor power losses, and component requirements. The studies are carried out based on time-domain simulation in the PSCAD/EMTDC software environment for various SM configurations and dc-fault conditions. The reported study results demonstrate the proposed hybrid-designed MMC-HVDC system based on the combination of the half-bridge and the proposed SM circuits is the optimal design among all evaluated systems in terms of the dc-fault-handing capability, semiconductor power losses, and component requirements.
ISSN:0885-8977
1937-4208
DOI:10.1109/TPWRD.2014.2351794