Effect of Nano- to Millisecond Pulse on Dielectric Barrier Discharges
It has recently been demonstrated that pulsed direct-current (dc) voltages show better performance in generating diffuse plasmas under various conditions. However, it still remains unclear whether the pulsewidth or the rising and falling times of the voltage pulse play the essential role in the impr...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on plasma science 2009-05, Vol.37 (5), p.647-652 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It has recently been demonstrated that pulsed direct-current (dc) voltages show better performance in generating diffuse plasmas under various conditions. However, it still remains unclear whether the pulsewidth or the rising and falling times of the voltage pulse play the essential role in the improvement of the performance of the dielectric barrier discharges (DBDs). In this paper, we focus on the effect of pulsewidth. Pulsed dc voltages with pulsewidth varying from 0.2 mus to about 1 ms are used to drive the DBDs. High-speed photographs show that diffuse Ar plasmas can be generated by pulsed dc voltages with pulsewidths covering the entire investigated range. It is found that the pulsewidths of the applied voltages affect the discharge current durations significantly when the pulsewidth is shorter than 600 ns or the break between the two consecutive pulses is shorter than 600 ns. |
---|---|
ISSN: | 0093-3813 1939-9375 |
DOI: | 10.1109/TPS.2009.2015321 |