Time-Optimal Model Predictive Control of Permanent Magnet Synchronous Motors Considering Current and Torque Constraints

In various permanent magnet synchronous motor (PMSM) drive applications the torque dynamics are an important performance criterion. Here, time-optimal control (TOC) methods can be utilized to achieve highest control dynamics. Applying state-of-the-art TOC methods leads to unintended overcurrents and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2023-07, Vol.38 (7), p.1-14
Hauptverfasser: Brosch, Anian, Wallscheid, Oliver, Bocker, Joachim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In various permanent magnet synchronous motor (PMSM) drive applications the torque dynamics are an important performance criterion. Here, time-optimal control (TOC) methods can be utilized to achieve highest control dynamics. Applying state-of-the-art TOC methods leads to unintended overcurrents and torque over- and undershoots during transient operation. To prevent these unintended control characteristics while still achieving TOC performance the time-optimal model predictive control (TO-MPC) is proposed in this work. The TO-MPC contains a reference pre-rotation (RPR) and a continuous control set model predictive flux control (CCS-MPFC). By applying Pontryagin's maximum principle, the TOC solution trajectories for states and inputs of the PMSM are determined neglecting current and torque limits. With the TOC solution, a flux linkage reference for the CCS-MPFC is calculated that corresponds to a pre-rotation of the operating point in the stator-fixed coordinate system. This pre-rotated flux linkage reference is reached in minimum time without overcurrents and torque over- as well as undershoots by incorporating current and torque limits as time-varying softened state constraints into the CCS-MPFC. Simulative and experimental investigations for linearly and nonlinearly magnetized PMSMs in the whole speed and torque range show that, compared to state-of-the-art TOC methods, overcurrents and torque over- as well as undershoots are prevented by the proposed TO-MPC.
ISSN:0885-8993
1941-0107
DOI:10.1109/TPEL.2023.3265705