Measurement Methods for High-Frequency Characterizations of Permeability, Permittivity, and Core Loss of Mn-Zn Ferrite Cores

Manganese-zinc (Mn-Zn) ferrites are the primary choice for high-frequency and high-power magnetic components. Optimum material selection is essential for high-performance magnetic component design. However, the manufacturers' material specifications usually do not provide sufficient information...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2022-12, Vol.37 (12), p.15152-15162
Hauptverfasser: Kacki, Marcin, Rylko, Marek S., Hayes, John G., Sullivan, Charles R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Manganese-zinc (Mn-Zn) ferrites are the primary choice for high-frequency and high-power magnetic components. Optimum material selection is essential for high-performance magnetic component design. However, the manufacturers' material specifications usually do not provide sufficient information to optimize the design. Complex permeability and permittivity, as well as specific power loss, are typically provided as one value, regardless of the core shape and size. Magnetic component design based on these incomplete specifications can result in a poorly optimized component. This article proposes methods to determine the properties of Mn-Zn ferrite at high frequencies, with tests up to 20 MHz. This article also presents experimental complex permeability and permittivity frequency characteristics for four ferrite materials: 3E10, 3F36, 3E65, and 3C95. The resulting fitted parameters for the equivalent-circuit model can be used in any design algorithm or simulation tool. The impacts of physical size, temperature and force on complex permeability and permittivity are also considered.
ISSN:0885-8993
1941-0107
DOI:10.1109/TPEL.2022.3189671