Optimization Design and Control of Single-Stage Single-Phase PV Inverters for MPPT Improvement
Due to the inherent double-frequency (2 f 0 ) ripple in single-stage single-phase photovoltaic grid-connected inverters, the maximum power point tracking (MPPT) will inevitably be affected. To improve the MPPT performances, a passive LC power decoupling circuit with a robust second-order sliding-mod...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2020-12, Vol.35 (12), p.13000-13016 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Due to the inherent double-frequency (2 f 0 ) ripple in single-stage single-phase photovoltaic grid-connected inverters, the maximum power point tracking (MPPT) will inevitably be affected. To improve the MPPT performances, a passive LC power decoupling circuit with a robust second-order sliding-mode control (SOSMC) is thus proposed in this article. With the passive LC decoupling path, the double-frequency pulsation on the dc link is effectively cancelled out. Thus, the MPPT accuracy is significantly enhanced, and the utilization of a small dc-link capacitor becomes possible. However, resonance between the LC circuit and the main dc-link capacitor may appear, which can be damped through an active damping method. Additionally, the proposed SOSMC ensures good steady-state, dynamic performance (voltage fluctuation and settling time), and the robustness of the dc-link voltage, which is also beneficial to MPPT control in terms of high accuracy and fast dynamics. The systematic design of SOSMC is presented, and a detailed parameter optimization design of LC decoupling circuit is discussed. Experimental tests are performed on a 2.5-kW single-stage single-phase grid-connected inverter, and the results validate the effectiveness of the proposed strategy. |
---|---|
ISSN: | 0885-8993 1941-0107 |
DOI: | 10.1109/TPEL.2020.2990923 |