Low-Harmonic-Contents and High-Efficiency Class E Full-Wave Current-Driven Rectifier for Megahertz Wireless Power Transfer Systems
Wireless power transfer (WPT) working at megahertz (MHz) is now being widely considered a promising candidate for the midrange transfer of a medium amount of power. Efforts have been made to build high-efficiency MHz WPT systems via both component- and system-level approaches. However, so far there...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2017-02, Vol.32 (2), p.1198-1209 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Wireless power transfer (WPT) working at megahertz (MHz) is now being widely considered a promising candidate for the midrange transfer of a medium amount of power. Efforts have been made to build high-efficiency MHz WPT systems via both component- and system-level approaches. However, so far there have been few discussions on high-frequency rectifier for MHz WPT applications. The soft-switching-based rectifiers, such as the Class E rectifiers, are one of the promising candidates for MHz rectification. This paper investigates the application of a Class E full-wave current-driven rectifier, for the first time, in WPT systems. A procedure is also developed to optimize the design of the rectifier and the MHz WPT system. For comparison purposes, the performances of both the Class E rectifier and the conventional full-bridge rectifier are investigated in terms of total harmonic distortion (THD), efficiency, power factor, voltage/current stresses, and voltage/current transfer functions, when being applied in an example 6.78-MHz WPT system. The simulation and experimental results show that the input voltage THD of the Class E full-wave rectifier is reduced to one-fourth of the THD of the full-bridge rectifier. In the optimally designed MHz WPT system, efficiencies of both the rectification (over 91%) and the overall system (around 80%) are obviously improved compared to the system using the conventional full-bridge rectifier. |
---|---|
ISSN: | 0885-8993 1941-0107 |
DOI: | 10.1109/TPEL.2016.2551288 |