Thermomechanical Assessment of Die-Attach Materials for Wide Bandgap Semiconductor Devices and Harsh Environment Applications

Currently, the demand by new application scenarios of increasing operating device temperatures in power systems is requiring new die-attach materials with higher melting points and suitable thermomechanical properties. This makes the die-attach material selection, die-attaching process, and thermome...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2014-05, Vol.29 (5), p.2261-2271
Hauptverfasser: Navarro, Luis A., Perpina, Xavier, Godignon, Philippe, Montserrat, Josep, Banu, Viorel, Vellvehi, Miquel, Jorda, Xavier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Currently, the demand by new application scenarios of increasing operating device temperatures in power systems is requiring new die-attach materials with higher melting points and suitable thermomechanical properties. This makes the die-attach material selection, die-attaching process, and thermomechanical evaluation a real challenge in nowadays power packaging technology. This paper presents a comparative analysis of the thermomechanical performance of high-temperature die-attach materials (sintered nano-Ag, AuGe, and PbSnAg) under harsh thermal cycling tests. This study is carried out using a test vehicle formed by four dice (considering Si and SiC semiconductors) and Cu substrates. Thermally cycled test vehicles have been thermomechanically evaluated using die-shear tests and acoustic microscopy inspections. Besides, special attention is paid to set up a nano-Ag sintering process, in which the effects of sintering pressure or substrate surface state (roughness and surface activation) on the die-attach layer are analyzed. As a main result, this study shows that the best die-attach adherence is obtained for nano-Ag when pressure is applied on the dice (using a specifically designed press) during the sintering process (11 MPa provided die-shear forces of 53 kgf). However, this die-attach presents a faster thermomechanical degradation under harsh thermal cycling tests than other considered high-temperature die-attach materials (AuGe and PbSnAg) and PbSnAg shows the best thermomechanical performances.
ISSN:0885-8993
1941-0107
DOI:10.1109/TPEL.2013.2279607