A family of high power density unregulated bus converters

This paper begins by reviewing current bus converters and exploring their limitations. Next, a family of inductor-less bus converters is proposed to overcome the limitations. In the new bus converters, magnetizing current is used to achieve zero-voltage-switching (ZVS) turn-on for all switches. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2005-09, Vol.20 (5), p.1045-1054
Hauptverfasser: Yuancheng Ren, Ming Xu, Julu Sun, Lee, F.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper begins by reviewing current bus converters and exploring their limitations. Next, a family of inductor-less bus converters is proposed to overcome the limitations. In the new bus converters, magnetizing current is used to achieve zero-voltage-switching (ZVS) turn-on for all switches. The resonant concept is used to achieve nearly zero-current-switching (ZCS) turn-off for the primary switches and no body diode loss for the synchronous rectifiers (SRs). Meanwhile, the self-driven method can be easily applied to save drive loss of SRs. Based on these concepts, a full-bridge bus converter is built in the quarter-brick size to verify the analysis. The experimental results indicate that it can achieve 95.5% efficiency at 500-W, 12-V/45-A output. Compared with industry products, this topology can dramatically increase the power density. These concepts are also applied to nonisolated dc/dc converters. As an example, a resonant Buck converter is proposed and experimentally demonstrated.
ISSN:0885-8993
1941-0107
DOI:10.1109/TPEL.2005.854025