Optimization for Speculative Execution in Big Data Processing Clusters

A big parallel processing job can be delayed substantially as long as one of its many tasks is being assigned to an unreliable or congested machine. To tackle this so-called straggler problem, most parallel processing frameworks such as MapReduce have adopted various strategies under which the syste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on parallel and distributed systems 2017-02, Vol.28 (2), p.530-545
Hauptverfasser: Xu, Huanle, Lau, Wing Cheong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A big parallel processing job can be delayed substantially as long as one of its many tasks is being assigned to an unreliable or congested machine. To tackle this so-called straggler problem, most parallel processing frameworks such as MapReduce have adopted various strategies under which the system may speculatively launch additional copies of the same task if its progress is abnormally slow when extra idling resource is available. In this paper, we focus on the design of speculative execution schemes for parallel processing clusters from an optimization perspective under different loading conditions. For the lightly loaded case, we analyze and propose one cloning scheme, namely, the Smart Cloning Algorithm (SCA) which is based on maximizing the overall system utility. We also derive the workload threshold under which SCA should be used for speculative execution. For the heavily loaded case, we propose the Enhanced Speculative Execution (ESE) algorithm which is an extension of the Microsoft Mantri scheme to mitigate stragglers. Our simulation results show SCA reduces the total job flowtime, i.e., the job delay/ response time by nearly 6 percent comparing to the speculative execution strategy of Microsoft Mantri. In addition, we show that the ESE Algorithm outperforms the Mantri baseline scheme by 71 percent in terms of the job flowtime while consuming the same amount of computation resource.
ISSN:1045-9219
1558-2183
DOI:10.1109/TPDS.2016.2564962