Energy-Aware Scheduling of MapReduce Jobs for Big Data Applications

The majority of large-scale data intensive applications executed by data centers are based on MapReduce or its open-source implementation, Hadoop. Such applications are executed on large clusters requiring large amounts of energy, making the energy costs a considerable fraction of the data center�...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on parallel and distributed systems 2015-10, Vol.26 (10), p.2720-2733
Hauptverfasser: Mashayekhy, Lena, Nejad, Mahyar Movahed, Grosu, Daniel, Quan Zhang, Weisong Shi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The majority of large-scale data intensive applications executed by data centers are based on MapReduce or its open-source implementation, Hadoop. Such applications are executed on large clusters requiring large amounts of energy, making the energy costs a considerable fraction of the data center's overall costs. Therefore minimizing the energy consumption when executing each MapReduce job is a critical concern for data centers. In this paper, we propose a framework for improving the energy efficiency of MapReduce applications, while satisfying the service level agreement (SLA). We first model the problem of energy-aware scheduling of a single MapReduce job as an Integer Program. We then propose two heuristic algorithms, called energy-aware MapReduce scheduling algorithms (EMRSA-I and EMRSA-II), that find the assignments of map and reduce tasks to the machine slots in orderto minimize the energy consumed when executing the application. We perform extensive experiments on a Hadoop cluster to determine the energy consumption and execution time for several workloads from the HiBench benchmark suite including TeraSort, PageRank, and K-means clustering, and then use this data in an extensive simulation study to analyze the performance of the proposed algorithms. The results show that EMRSA-I and EMRSA-II are able to find near optimal job schedules consuming approximately 40 percent less energy on average than the schedules obtained by a common practice scheduler that minimizes the makespan.
ISSN:1045-9219
1558-2183
DOI:10.1109/TPDS.2014.2358556