Energy-Aware Scheduling of MapReduce Jobs for Big Data Applications
The majority of large-scale data intensive applications executed by data centers are based on MapReduce or its open-source implementation, Hadoop. Such applications are executed on large clusters requiring large amounts of energy, making the energy costs a considerable fraction of the data center...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on parallel and distributed systems 2015-10, Vol.26 (10), p.2720-2733 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The majority of large-scale data intensive applications executed by data centers are based on MapReduce or its open-source implementation, Hadoop. Such applications are executed on large clusters requiring large amounts of energy, making the energy costs a considerable fraction of the data center's overall costs. Therefore minimizing the energy consumption when executing each MapReduce job is a critical concern for data centers. In this paper, we propose a framework for improving the energy efficiency of MapReduce applications, while satisfying the service level agreement (SLA). We first model the problem of energy-aware scheduling of a single MapReduce job as an Integer Program. We then propose two heuristic algorithms, called energy-aware MapReduce scheduling algorithms (EMRSA-I and EMRSA-II), that find the assignments of map and reduce tasks to the machine slots in orderto minimize the energy consumed when executing the application. We perform extensive experiments on a Hadoop cluster to determine the energy consumption and execution time for several workloads from the HiBench benchmark suite including TeraSort, PageRank, and K-means clustering, and then use this data in an extensive simulation study to analyze the performance of the proposed algorithms. The results show that EMRSA-I and EMRSA-II are able to find near optimal job schedules consuming approximately 40 percent less energy on average than the schedules obtained by a common practice scheduler that minimizes the makespan. |
---|---|
ISSN: | 1045-9219 1558-2183 |
DOI: | 10.1109/TPDS.2014.2358556 |