DDC: A Novel Scheme to Directly Decode the Collisions in UHF RFID Systems

RFID has been gaining popularity due to its variety of applications, such as inventory control and localization. One important issue in RFID system is tag identification. In RFID systems, the tag randomly selects a slot to send a Random Number (RN) packet to contend for identification. Collision hap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on parallel and distributed systems 2012-02, Vol.23 (2), p.263-270
Hauptverfasser: Lei Kang, Kaishun Wu, Jin Zhang, Haoyu Tan, Ni, Lionel M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:RFID has been gaining popularity due to its variety of applications, such as inventory control and localization. One important issue in RFID system is tag identification. In RFID systems, the tag randomly selects a slot to send a Random Number (RN) packet to contend for identification. Collision happens when multiple tags select the same slot, which makes the RN packet undecodable and thus reduces the channel utilization. In this paper, we redesign the RN pattern to make the collided RNs decodable. By leveraging the collision slots, the system performance can be dramatically enhanced. This novel scheme is called DDC, which is able to directly decode the collisions without exact knowledge of collided RNs. In the DDC scheme, we modify the RN generator in RFID tag and add a collision decoding scheme for RFID reader. We implement DDC in GNU Radio and USRP2 based testbed to verify its feasibility. Both theoretical analysis and testbed experiment show that DDC achieves 40 percent tag read rate gain compared with traditional RFID protocol.
ISSN:1045-9219
1558-2183
DOI:10.1109/TPDS.2011.116