Out-of-Domain Generalization From a Single Source: An Uncertainty Quantification Approach
We are concerned with a worst-case scenario in model generalization, in the sense that a model aims to perform well on many unseen domains while there is only one single domain available for training. We propose Meta-Learning based Adversarial Domain Augmentation to solve this Out-of-Domain generali...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2024-03, Vol.46 (3), p.1775-1787 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We are concerned with a worst-case scenario in model generalization, in the sense that a model aims to perform well on many unseen domains while there is only one single domain available for training. We propose Meta-Learning based Adversarial Domain Augmentation to solve this Out-of-Domain generalization problem. The key idea is to leverage adversarial training to create "fictitious" yet "challenging" populations, from which a model can learn to generalize with theoretical guarantees. To facilitate fast and desirable domain augmentation, we cast the model training in a meta-learning scheme and use a Wasserstein Auto-Encoder to relax the widely used worst-case constraint. We further improve our method by integrating uncertainty quantification for efficient domain generalization. Extensive experiments on multiple benchmark datasets indicate its superior performance in tackling single domain generalization. |
---|---|
ISSN: | 0162-8828 1939-3539 2160-9292 |
DOI: | 10.1109/TPAMI.2022.3184598 |