Interpretable CNNs for Object Classification

This paper proposes a generic method to learn interpretable convolutional filters in a deep convolutional neural network (CNN) for object classification, where each interpretable filter encodes features of a specific object part. Our method does not require additional annotations of object parts or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2021-10, Vol.43 (10), p.3416-3431
Hauptverfasser: Zhang, Quanshi, Wang, Xin, Wu, Ying Nian, Zhou, Huilin, Zhu, Song-Chun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a generic method to learn interpretable convolutional filters in a deep convolutional neural network (CNN) for object classification, where each interpretable filter encodes features of a specific object part. Our method does not require additional annotations of object parts or textures for supervision. Instead, we use the same training data as traditional CNNs. Our method automatically assigns each interpretable filter in a high conv-layer with an object part of a certain category during the learning process. Such explicit knowledge representations in conv-layers of the CNN help people clarify the logic encoded in the CNN, i.e., answering what patterns the CNN extracts from an input image and uses for prediction. We have tested our method using different benchmark CNNs with various architectures to demonstrate the broad applicability of our method. Experiments have shown that our interpretable filters are much more semantically meaningful than traditional filters.
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2020.2982882