Zero-Shot Learning on Semantic Class Prototype Graph

Zero-Shot Learning (ZSL) for visual recognition is typically achieved by exploiting a semantic embedding space. In such a space, both seen and unseen class labels as well as image features can be embedded so that the similarity among them can be measured directly. In this work, we consider that the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2018-08, Vol.40 (8), p.2009-2022
Hauptverfasser: Fu, Zhenyong, Xiang, Tao, Kodirov, Elyor, Gong, Shaogang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Zero-Shot Learning (ZSL) for visual recognition is typically achieved by exploiting a semantic embedding space. In such a space, both seen and unseen class labels as well as image features can be embedded so that the similarity among them can be measured directly. In this work, we consider that the key to effective ZSL is to compute an optimal distance metric in the semantic embedding space. Existing ZSL works employ either euclidean or cosine distances. However, in a high-dimensional space where the projected class labels (prototypes) are sparse, these distances are suboptimal, resulting in a number of problems including hubness and domain shift. To overcome these problems, a novel manifold distance computed on a semantic class prototype graph is proposed which takes into account the rich intrinsic semantic structure, i.e., semantic manifold, of the class prototype distribution. To further alleviate the domain shift problem, a new regularisation term is introduced into a ranking loss based embedding model. Specifically, the ranking loss objective is regularised by unseen class prototypes to prevent the projected object features from being biased towards the seen prototypes. Extensive experiments on four benchmarks show that our method significantly outperforms the state-of-the-art.
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2017.2737007