Nested Hierarchical Dirichlet Processes

We develop a nested hierarchical Dirichlet process (nHDP) for hierarchical topic modeling. The nHDP generalizes the nested Chinese restaurant process (nCRP) to allow each word to follow its own path to a topic node according to a per-document distribution over the paths on a shared tree. This allevi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2015-02, Vol.37 (2), p.256-270
Hauptverfasser: Paisley, John, Wang, Chong, Blei, David M., Jordan, Michael I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop a nested hierarchical Dirichlet process (nHDP) for hierarchical topic modeling. The nHDP generalizes the nested Chinese restaurant process (nCRP) to allow each word to follow its own path to a topic node according to a per-document distribution over the paths on a shared tree. This alleviates the rigid, single-path formulation assumed by the nCRP, allowing documents to easily express complex thematic borrowings. We derive a stochastic variational inference algorithm for the model, which enables efficient inference for massive collections of text documents. We demonstrate our algorithm on 1.8 million documents from The New York Times and 2.7 million documents from Wikipedia .
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2014.2318728