Nonparametric supervised learning by linear interpolation with maximum entropy
Nonparametric neighborhood methods for learning entail estimation of class conditional probabilities based on relative frequencies of samples that are "near-neighbors" of a test point. We propose and explore the behavior of a learning algorithm that uses linear interpolation and the princi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2006-05, Vol.28 (5), p.766-781 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nonparametric neighborhood methods for learning entail estimation of class conditional probabilities based on relative frequencies of samples that are "near-neighbors" of a test point. We propose and explore the behavior of a learning algorithm that uses linear interpolation and the principle of maximum entropy (LIME). We consider some theoretical properties of the LIME algorithm: LIME weights have exponential form; the estimates are consistent; and the estimates are robust to additive noise. In relation to bias reduction, we show that near-neighbors contain a test point in their convex hull asymptotically. The common linear interpolation solution used for regression on grids or look-up-tables is shown to solve a related maximum entropy problem. LIME simulation results support use of the method, and performance on a pipeline integrity classification problem demonstrates that the proposed algorithm has practical value. |
---|---|
ISSN: | 0162-8828 1939-3539 |
DOI: | 10.1109/TPAMI.2006.101 |