A computational model for periodic pattern perception based on frieze and wallpaper groups

We present a computational model for periodic pattern perception based on the mathematical theory of crystallographic groups. In each N-dimensional Euclidean space, a finite number of symmetry groups can characterize the structures of an infinite variety of periodic patterns. In 2D space, there are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2004-03, Vol.26 (3), p.354-371
Hauptverfasser: Yanxi Liu, Collins, R.T., Tsin, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a computational model for periodic pattern perception based on the mathematical theory of crystallographic groups. In each N-dimensional Euclidean space, a finite number of symmetry groups can characterize the structures of an infinite variety of periodic patterns. In 2D space, there are seven frieze groups describing monochrome patterns that repeat along one direction and 17 wallpaper groups for patterns that repeat along two linearly independent directions to tile the plane. We develop a set of computer algorithms that "understand" a given periodic pattern by automatically finding its underlying lattice, identifying its symmetry group, and extracting its representative motifs. We also extend this computational model for near-periodic patterns using geometric AIC. Applications of such a computational model include pattern indexing, texture synthesis, image compression, and gait analysis.
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2004.1262332