A Study of a GEM Tracking Detector for Imaging Positrons from PET Radioisotopes in Plants
Positron Emission Tomography is a powerful imaging technique used for humans and animals that can also be used to study plant biology. However, since many of the structures found on plants (e.g., leaves) are very thin, a large portion of the positrons emitted from PET isotopes escape before annihila...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nuclear science 2014-10, Vol.61 (5), p.2464-2471 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Positron Emission Tomography is a powerful imaging technique used for humans and animals that can also be used to study plant biology. However, since many of the structures found on plants (e.g., leaves) are very thin, a large portion of the positrons emitted from PET isotopes escape before annihilation, leading to low efficiency and quantification inaccuracies. In this study, a gas tracking detector was used to measure escaping positrons from PET radiotracer isotopes which has the ability to reconstruct three dimensional tracks that can be used to form an image of the emitting object. This device uses a triple GEM detector with a short drift region and an XY strip readout plane to measure a vector for positrons passing through a drift gap. By projecting each particle track back to the object surface, a 2-D image of the spatial distribution of the positrons that escaped from that surface can be reconstructed. In this paper, we will describe the basic principle of the GEM detector and present results on its performance using various types of phantoms and actual plant specimens. Monte Carlo simulations are also used to better understand the detector performance and compare to actual measurements. |
---|---|
ISSN: | 0018-9499 1558-1578 |
DOI: | 10.1109/TNS.2014.2333740 |