Technology Scaling Comparison of Flip-Flop Heavy-Ion Single-Event Upset Cross Sections

Heavy-ion experimental results from flip-flops in 180-nm to 28-nm bulk technologies are used to quantify single-event upset trends. The results show that as technologies scale, D flip-flop single-event upset cross sections decrease while redundant storage node flip-flops cross sections may stay the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2013-12, Vol.60 (6), p.4368-4373
Hauptverfasser: Gaspard, N. J., Jagannathan, S., Diggins, Z. J., King, M. P., Wen, S-J., Wong, R., Loveless, T. D., Lilja, K., Bounasser, M., Reece, T., Witulski, A. F., Holman, W. T., Bhuva, B. L., Massengill, L. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Heavy-ion experimental results from flip-flops in 180-nm to 28-nm bulk technologies are used to quantify single-event upset trends. The results show that as technologies scale, D flip-flop single-event upset cross sections decrease while redundant storage node flip-flops cross sections may stay the same or increase depending on the layout spacing of storage nodes. As technology feature sizes become smaller, D flip-flop single-event upset cross sections approach redundant storage node hardened flip-flops cross sections for particles with high linear energy transfer values. Experimental results show that redundant storage node designs provide > 100{\rm X} improvement in single-event upset cross section over DFF for ion linear energy transfer values below 10~\hbox{MeV-cm}^2/\hbox{mg} down to 28-nm feature sizes.
ISSN:0018-9499
1558-1578
DOI:10.1109/TNS.2013.2289745