Radiation-Induced Oxide Charge in Low- and High-H Environments
Electronic structure calculations and irradiation measurements are used to obtain insight into oxide trapped charge mechanisms in varying hydrogen ambients. Quantitative agreement between measured and simulated oxide and interface-trap charge densities is obtained over a wide range of H _{2} concent...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nuclear science 2012-08, Vol.59 (4), p.755-759 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 759 |
---|---|
container_issue | 4 |
container_start_page | 755 |
container_title | IEEE transactions on nuclear science |
container_volume | 59 |
creator | Rowsey, Nicole L. Law, Mark E. Schrimpf, Ronald D. Fleetwood, Daniel M. Tuttle, Blair R. Pantelides, Sokrates T. |
description | Electronic structure calculations and irradiation measurements are used to obtain insight into oxide trapped charge mechanisms in varying hydrogen ambients. Quantitative agreement between measured and simulated oxide and interface-trap charge densities is obtained over a wide range of H _{2} concentrations by implementing first-principles calculations of the energetics, and dynamics of charge transport and trapping, into TCAD simulations of irradiated MOS structures. Hole trapping dominates for typical H _{2} densities, but protons can dominate at high H _{2} densities. The rate of the interface trap reaction, in which protons that are liberated from charged oxygen vacancies by molecular hydrogen form dangling bonds on the interface, is found to play a key role in determining the relative concentrations of oxide and interface-trap charge densities. |
doi_str_mv | 10.1109/TNS.2012.2183889 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNS_2012_2183889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6153410</ieee_id><sourcerecordid>2778001041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1363-968060cbb91d7d6209d162fbd41e72a3c0610ac32b8e239289ea76b489af78513</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKt7wU3AdWpeMskkG0FKawvFgtZ1yEwybYrN1KT14987pcXV48K598FB6BboAIDqh8XL24BRYAMGiiulz1APhFAERKnOUY9SUEQXWl-iq5zXXSwEFT30-GpdsLvQRjKNbl97h-c_wXk8XNm09DhEPGu_CbbR4UlYrsgEj-JXSG3c-LjL1-iisR_Z35xuH72PR4vhhMzmz9Ph04zUwCUnWioqaV1VGlzpJKPagWRN5QrwJbO8phKorTmrlGdcM6W9LWVVKG2bUgngfXR_3N2m9nPv886s232K3UsDVDFgSjLeUfRI1anNOfnGbFPY2PTbQeZgyXSWzMGSOVnqKnfHSvDe_-MSBC-A8j81ImBC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082128623</pqid></control><display><type>article</type><title>Radiation-Induced Oxide Charge in Low- and High-H Environments</title><source>IEEE Electronic Library (IEL)</source><creator>Rowsey, Nicole L. ; Law, Mark E. ; Schrimpf, Ronald D. ; Fleetwood, Daniel M. ; Tuttle, Blair R. ; Pantelides, Sokrates T.</creator><creatorcontrib>Rowsey, Nicole L. ; Law, Mark E. ; Schrimpf, Ronald D. ; Fleetwood, Daniel M. ; Tuttle, Blair R. ; Pantelides, Sokrates T.</creatorcontrib><description>Electronic structure calculations and irradiation measurements are used to obtain insight into oxide trapped charge mechanisms in varying hydrogen ambients. Quantitative agreement between measured and simulated oxide and interface-trap charge densities is obtained over a wide range of H _{2} concentrations by implementing first-principles calculations of the energetics, and dynamics of charge transport and trapping, into TCAD simulations of irradiated MOS structures. Hole trapping dominates for typical H _{2} densities, but protons can dominate at high H _{2} densities. The rate of the interface trap reaction, in which protons that are liberated from charged oxygen vacancies by molecular hydrogen form dangling bonds on the interface, is found to play a key role in determining the relative concentrations of oxide and interface-trap charge densities.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2012.2183889</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Charge carrier processes ; Energy barrier ; Mathematical model ; N_{\rm it} ; N_{\rm ot} ; Protons ; radiation-induced oxide charge ; Silicon</subject><ispartof>IEEE transactions on nuclear science, 2012-08, Vol.59 (4), p.755-759</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1363-968060cbb91d7d6209d162fbd41e72a3c0610ac32b8e239289ea76b489af78513</citedby><cites>FETCH-LOGICAL-c1363-968060cbb91d7d6209d162fbd41e72a3c0610ac32b8e239289ea76b489af78513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6153410$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6153410$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rowsey, Nicole L.</creatorcontrib><creatorcontrib>Law, Mark E.</creatorcontrib><creatorcontrib>Schrimpf, Ronald D.</creatorcontrib><creatorcontrib>Fleetwood, Daniel M.</creatorcontrib><creatorcontrib>Tuttle, Blair R.</creatorcontrib><creatorcontrib>Pantelides, Sokrates T.</creatorcontrib><title>Radiation-Induced Oxide Charge in Low- and High-H Environments</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>Electronic structure calculations and irradiation measurements are used to obtain insight into oxide trapped charge mechanisms in varying hydrogen ambients. Quantitative agreement between measured and simulated oxide and interface-trap charge densities is obtained over a wide range of H _{2} concentrations by implementing first-principles calculations of the energetics, and dynamics of charge transport and trapping, into TCAD simulations of irradiated MOS structures. Hole trapping dominates for typical H _{2} densities, but protons can dominate at high H _{2} densities. The rate of the interface trap reaction, in which protons that are liberated from charged oxygen vacancies by molecular hydrogen form dangling bonds on the interface, is found to play a key role in determining the relative concentrations of oxide and interface-trap charge densities.</description><subject>Charge carrier processes</subject><subject>Energy barrier</subject><subject>Mathematical model</subject><subject>N_{\rm it}</subject><subject>N_{\rm ot}</subject><subject>Protons</subject><subject>radiation-induced oxide charge</subject><subject>Silicon</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEURYMoWKt7wU3AdWpeMskkG0FKawvFgtZ1yEwybYrN1KT14987pcXV48K598FB6BboAIDqh8XL24BRYAMGiiulz1APhFAERKnOUY9SUEQXWl-iq5zXXSwEFT30-GpdsLvQRjKNbl97h-c_wXk8XNm09DhEPGu_CbbR4UlYrsgEj-JXSG3c-LjL1-iisR_Z35xuH72PR4vhhMzmz9Ph04zUwCUnWioqaV1VGlzpJKPagWRN5QrwJbO8phKorTmrlGdcM6W9LWVVKG2bUgngfXR_3N2m9nPv886s232K3UsDVDFgSjLeUfRI1anNOfnGbFPY2PTbQeZgyXSWzMGSOVnqKnfHSvDe_-MSBC-A8j81ImBC</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Rowsey, Nicole L.</creator><creator>Law, Mark E.</creator><creator>Schrimpf, Ronald D.</creator><creator>Fleetwood, Daniel M.</creator><creator>Tuttle, Blair R.</creator><creator>Pantelides, Sokrates T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>201208</creationdate><title>Radiation-Induced Oxide Charge in Low- and High-H Environments</title><author>Rowsey, Nicole L. ; Law, Mark E. ; Schrimpf, Ronald D. ; Fleetwood, Daniel M. ; Tuttle, Blair R. ; Pantelides, Sokrates T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1363-968060cbb91d7d6209d162fbd41e72a3c0610ac32b8e239289ea76b489af78513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Charge carrier processes</topic><topic>Energy barrier</topic><topic>Mathematical model</topic><topic>N_{\rm it}</topic><topic>N_{\rm ot}</topic><topic>Protons</topic><topic>radiation-induced oxide charge</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rowsey, Nicole L.</creatorcontrib><creatorcontrib>Law, Mark E.</creatorcontrib><creatorcontrib>Schrimpf, Ronald D.</creatorcontrib><creatorcontrib>Fleetwood, Daniel M.</creatorcontrib><creatorcontrib>Tuttle, Blair R.</creatorcontrib><creatorcontrib>Pantelides, Sokrates T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rowsey, Nicole L.</au><au>Law, Mark E.</au><au>Schrimpf, Ronald D.</au><au>Fleetwood, Daniel M.</au><au>Tuttle, Blair R.</au><au>Pantelides, Sokrates T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiation-Induced Oxide Charge in Low- and High-H Environments</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2012-08</date><risdate>2012</risdate><volume>59</volume><issue>4</issue><spage>755</spage><epage>759</epage><pages>755-759</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>Electronic structure calculations and irradiation measurements are used to obtain insight into oxide trapped charge mechanisms in varying hydrogen ambients. Quantitative agreement between measured and simulated oxide and interface-trap charge densities is obtained over a wide range of H _{2} concentrations by implementing first-principles calculations of the energetics, and dynamics of charge transport and trapping, into TCAD simulations of irradiated MOS structures. Hole trapping dominates for typical H _{2} densities, but protons can dominate at high H _{2} densities. The rate of the interface trap reaction, in which protons that are liberated from charged oxygen vacancies by molecular hydrogen form dangling bonds on the interface, is found to play a key role in determining the relative concentrations of oxide and interface-trap charge densities.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2012.2183889</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9499 |
ispartof | IEEE transactions on nuclear science, 2012-08, Vol.59 (4), p.755-759 |
issn | 0018-9499 1558-1578 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TNS_2012_2183889 |
source | IEEE Electronic Library (IEL) |
subjects | Charge carrier processes Energy barrier Mathematical model N_{\rm it} N_{\rm ot} Protons radiation-induced oxide charge Silicon |
title | Radiation-Induced Oxide Charge in Low- and High-H Environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A27%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiation-Induced%20Oxide%20Charge%20in%20Low-%20and%20High-H%20Environments&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Rowsey,%20Nicole%20L.&rft.date=2012-08&rft.volume=59&rft.issue=4&rft.spage=755&rft.epage=759&rft.pages=755-759&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2012.2183889&rft_dat=%3Cproquest_RIE%3E2778001041%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082128623&rft_id=info:pmid/&rft_ieee_id=6153410&rfr_iscdi=true |