Radiation-Induced Oxide Charge in Low- and High-H Environments

Electronic structure calculations and irradiation measurements are used to obtain insight into oxide trapped charge mechanisms in varying hydrogen ambients. Quantitative agreement between measured and simulated oxide and interface-trap charge densities is obtained over a wide range of H _{2} concent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2012-08, Vol.59 (4), p.755-759
Hauptverfasser: Rowsey, Nicole L., Law, Mark E., Schrimpf, Ronald D., Fleetwood, Daniel M., Tuttle, Blair R., Pantelides, Sokrates T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 759
container_issue 4
container_start_page 755
container_title IEEE transactions on nuclear science
container_volume 59
creator Rowsey, Nicole L.
Law, Mark E.
Schrimpf, Ronald D.
Fleetwood, Daniel M.
Tuttle, Blair R.
Pantelides, Sokrates T.
description Electronic structure calculations and irradiation measurements are used to obtain insight into oxide trapped charge mechanisms in varying hydrogen ambients. Quantitative agreement between measured and simulated oxide and interface-trap charge densities is obtained over a wide range of H _{2} concentrations by implementing first-principles calculations of the energetics, and dynamics of charge transport and trapping, into TCAD simulations of irradiated MOS structures. Hole trapping dominates for typical H _{2} densities, but protons can dominate at high H _{2} densities. The rate of the interface trap reaction, in which protons that are liberated from charged oxygen vacancies by molecular hydrogen form dangling bonds on the interface, is found to play a key role in determining the relative concentrations of oxide and interface-trap charge densities.
doi_str_mv 10.1109/TNS.2012.2183889
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNS_2012_2183889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6153410</ieee_id><sourcerecordid>2778001041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1363-968060cbb91d7d6209d162fbd41e72a3c0610ac32b8e239289ea76b489af78513</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKt7wU3AdWpeMskkG0FKawvFgtZ1yEwybYrN1KT14987pcXV48K598FB6BboAIDqh8XL24BRYAMGiiulz1APhFAERKnOUY9SUEQXWl-iq5zXXSwEFT30-GpdsLvQRjKNbl97h-c_wXk8XNm09DhEPGu_CbbR4UlYrsgEj-JXSG3c-LjL1-iisR_Z35xuH72PR4vhhMzmz9Ph04zUwCUnWioqaV1VGlzpJKPagWRN5QrwJbO8phKorTmrlGdcM6W9LWVVKG2bUgngfXR_3N2m9nPv886s232K3UsDVDFgSjLeUfRI1anNOfnGbFPY2PTbQeZgyXSWzMGSOVnqKnfHSvDe_-MSBC-A8j81ImBC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082128623</pqid></control><display><type>article</type><title>Radiation-Induced Oxide Charge in Low- and High-H Environments</title><source>IEEE Electronic Library (IEL)</source><creator>Rowsey, Nicole L. ; Law, Mark E. ; Schrimpf, Ronald D. ; Fleetwood, Daniel M. ; Tuttle, Blair R. ; Pantelides, Sokrates T.</creator><creatorcontrib>Rowsey, Nicole L. ; Law, Mark E. ; Schrimpf, Ronald D. ; Fleetwood, Daniel M. ; Tuttle, Blair R. ; Pantelides, Sokrates T.</creatorcontrib><description>Electronic structure calculations and irradiation measurements are used to obtain insight into oxide trapped charge mechanisms in varying hydrogen ambients. Quantitative agreement between measured and simulated oxide and interface-trap charge densities is obtained over a wide range of H _{2} concentrations by implementing first-principles calculations of the energetics, and dynamics of charge transport and trapping, into TCAD simulations of irradiated MOS structures. Hole trapping dominates for typical H _{2} densities, but protons can dominate at high H _{2} densities. The rate of the interface trap reaction, in which protons that are liberated from charged oxygen vacancies by molecular hydrogen form dangling bonds on the interface, is found to play a key role in determining the relative concentrations of oxide and interface-trap charge densities.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2012.2183889</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Charge carrier processes ; Energy barrier ; Mathematical model ; N_{\rm it} ; N_{\rm ot} ; Protons ; radiation-induced oxide charge ; Silicon</subject><ispartof>IEEE transactions on nuclear science, 2012-08, Vol.59 (4), p.755-759</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1363-968060cbb91d7d6209d162fbd41e72a3c0610ac32b8e239289ea76b489af78513</citedby><cites>FETCH-LOGICAL-c1363-968060cbb91d7d6209d162fbd41e72a3c0610ac32b8e239289ea76b489af78513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6153410$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6153410$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rowsey, Nicole L.</creatorcontrib><creatorcontrib>Law, Mark E.</creatorcontrib><creatorcontrib>Schrimpf, Ronald D.</creatorcontrib><creatorcontrib>Fleetwood, Daniel M.</creatorcontrib><creatorcontrib>Tuttle, Blair R.</creatorcontrib><creatorcontrib>Pantelides, Sokrates T.</creatorcontrib><title>Radiation-Induced Oxide Charge in Low- and High-H Environments</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>Electronic structure calculations and irradiation measurements are used to obtain insight into oxide trapped charge mechanisms in varying hydrogen ambients. Quantitative agreement between measured and simulated oxide and interface-trap charge densities is obtained over a wide range of H _{2} concentrations by implementing first-principles calculations of the energetics, and dynamics of charge transport and trapping, into TCAD simulations of irradiated MOS structures. Hole trapping dominates for typical H _{2} densities, but protons can dominate at high H _{2} densities. The rate of the interface trap reaction, in which protons that are liberated from charged oxygen vacancies by molecular hydrogen form dangling bonds on the interface, is found to play a key role in determining the relative concentrations of oxide and interface-trap charge densities.</description><subject>Charge carrier processes</subject><subject>Energy barrier</subject><subject>Mathematical model</subject><subject>N_{\rm it}</subject><subject>N_{\rm ot}</subject><subject>Protons</subject><subject>radiation-induced oxide charge</subject><subject>Silicon</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEURYMoWKt7wU3AdWpeMskkG0FKawvFgtZ1yEwybYrN1KT14987pcXV48K598FB6BboAIDqh8XL24BRYAMGiiulz1APhFAERKnOUY9SUEQXWl-iq5zXXSwEFT30-GpdsLvQRjKNbl97h-c_wXk8XNm09DhEPGu_CbbR4UlYrsgEj-JXSG3c-LjL1-iisR_Z35xuH72PR4vhhMzmz9Ph04zUwCUnWioqaV1VGlzpJKPagWRN5QrwJbO8phKorTmrlGdcM6W9LWVVKG2bUgngfXR_3N2m9nPv886s232K3UsDVDFgSjLeUfRI1anNOfnGbFPY2PTbQeZgyXSWzMGSOVnqKnfHSvDe_-MSBC-A8j81ImBC</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Rowsey, Nicole L.</creator><creator>Law, Mark E.</creator><creator>Schrimpf, Ronald D.</creator><creator>Fleetwood, Daniel M.</creator><creator>Tuttle, Blair R.</creator><creator>Pantelides, Sokrates T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>201208</creationdate><title>Radiation-Induced Oxide Charge in Low- and High-H Environments</title><author>Rowsey, Nicole L. ; Law, Mark E. ; Schrimpf, Ronald D. ; Fleetwood, Daniel M. ; Tuttle, Blair R. ; Pantelides, Sokrates T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1363-968060cbb91d7d6209d162fbd41e72a3c0610ac32b8e239289ea76b489af78513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Charge carrier processes</topic><topic>Energy barrier</topic><topic>Mathematical model</topic><topic>N_{\rm it}</topic><topic>N_{\rm ot}</topic><topic>Protons</topic><topic>radiation-induced oxide charge</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rowsey, Nicole L.</creatorcontrib><creatorcontrib>Law, Mark E.</creatorcontrib><creatorcontrib>Schrimpf, Ronald D.</creatorcontrib><creatorcontrib>Fleetwood, Daniel M.</creatorcontrib><creatorcontrib>Tuttle, Blair R.</creatorcontrib><creatorcontrib>Pantelides, Sokrates T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rowsey, Nicole L.</au><au>Law, Mark E.</au><au>Schrimpf, Ronald D.</au><au>Fleetwood, Daniel M.</au><au>Tuttle, Blair R.</au><au>Pantelides, Sokrates T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiation-Induced Oxide Charge in Low- and High-H Environments</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2012-08</date><risdate>2012</risdate><volume>59</volume><issue>4</issue><spage>755</spage><epage>759</epage><pages>755-759</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>Electronic structure calculations and irradiation measurements are used to obtain insight into oxide trapped charge mechanisms in varying hydrogen ambients. Quantitative agreement between measured and simulated oxide and interface-trap charge densities is obtained over a wide range of H _{2} concentrations by implementing first-principles calculations of the energetics, and dynamics of charge transport and trapping, into TCAD simulations of irradiated MOS structures. Hole trapping dominates for typical H _{2} densities, but protons can dominate at high H _{2} densities. The rate of the interface trap reaction, in which protons that are liberated from charged oxygen vacancies by molecular hydrogen form dangling bonds on the interface, is found to play a key role in determining the relative concentrations of oxide and interface-trap charge densities.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2012.2183889</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 2012-08, Vol.59 (4), p.755-759
issn 0018-9499
1558-1578
language eng
recordid cdi_crossref_primary_10_1109_TNS_2012_2183889
source IEEE Electronic Library (IEL)
subjects Charge carrier processes
Energy barrier
Mathematical model
N_{\rm it}
N_{\rm ot}
Protons
radiation-induced oxide charge
Silicon
title Radiation-Induced Oxide Charge in Low- and High-H Environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A27%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiation-Induced%20Oxide%20Charge%20in%20Low-%20and%20High-H%20Environments&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Rowsey,%20Nicole%20L.&rft.date=2012-08&rft.volume=59&rft.issue=4&rft.spage=755&rft.epage=759&rft.pages=755-759&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2012.2183889&rft_dat=%3Cproquest_RIE%3E2778001041%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082128623&rft_id=info:pmid/&rft_ieee_id=6153410&rfr_iscdi=true