Neuro-Musculoskeletal Modeling for Online Estimation of Continuous Wrist Movements from Motor Unit Activities

Decoding movement intentions from motor unit (MU) activities remains an ongoing challenge, which restricts our comprehension of the intricate transition mechanism from microscopic neural drive to macroscopic movements. This study presents an innovative neuro-musculoskeletal (NMS) model driven by MU...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on neural systems and rehabilitation engineering 2024-01, Vol.32, p.3804-3814
Hauptverfasser: Liu, Yunfei, Zhang, Xu, Zhao, Haowen, Chen, Xiang, Yao, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Decoding movement intentions from motor unit (MU) activities remains an ongoing challenge, which restricts our comprehension of the intricate transition mechanism from microscopic neural drive to macroscopic movements. This study presents an innovative neuro-musculoskeletal (NMS) model driven by MU activities for online estimation of continuous wrist movements. The proposed model employs a physiological and comprehensive utilization of MU firings and waveforms, thus facilitating the localization of MUs to muscle-tendon units (MTU) as well as the computation of MU-specific neural excitation. Subsequently, the MU-specific neural excitation was integrated to form the MTU-specific neural excitation, which were then inputted into a musculoskeletal model to accomplish the joint angle estimation. To assess the effectiveness of this model, high-density surface electromyography and angular data were collected from the forearms of eight subjects during their performance of wrist flexion-extension task. Two pieces of 8\times 8 electrode arrays and a motion capture system were employed for data acquisition. Following offline model calibration with a global optimization algorithm, online angle estimation results demonstrated a significant superiority of the proposed model over the state-of-the-art NMS models (p < 0.05), yielding the lowest normalized root mean square error ( 0.10~\pm ~0.02 ) and the highest determination coefficient ( 0.87~\pm ~0.06 ). This study provides a novel idea for the decoding of joint movements from MU activities. The research findings hold the potential to advance the development of NMS models towards the control of multiple degrees of freedom, with promising applications in the fields of motor control, biomechanics, and neuro-rehabilitation engineering.
ISSN:1534-4320
1558-0210
1558-0210
DOI:10.1109/TNSRE.2024.3477607