The Reproducibility of Bio-Acoustic Features is Associated With Sample Duration, Speech Task, and Gender

Bio-acoustic properties of speech show evolving value in analyzing psychiatric illnesses. Obtaining a sufficient speech sample length to quantify these properties is essential, but the impact of sample duration on the stability of bio-acoustic features has not been systematically explored. We aimed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on neural systems and rehabilitation engineering 2022, Vol.30, p.167-175
Hauptverfasser: Almaghrabi, Shaykhah A., Thewlis, Dominic, Thwaites, Simon, Rogasch, Nigel C., Lau, Stephan, Clark, Scott R., Baumert, Mathias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bio-acoustic properties of speech show evolving value in analyzing psychiatric illnesses. Obtaining a sufficient speech sample length to quantify these properties is essential, but the impact of sample duration on the stability of bio-acoustic features has not been systematically explored. We aimed to evaluate bio-acoustic features' reproducibility against changes in speech durations and tasks. We extracted source, spectral, formant, and prosodic features in 185 English-speaking adults (98 w, 87 m) for reading-a-story and counting tasks. We compared features at 25% of the total sample duration of the reading task to those obtained from non-overlapping randomly selected sub-samples shortened to 75%, 50%, and 25% of total duration using intraclass correlation coefficients. We also compared the features extracted from entire recordings to those measured at 25% of the duration and features obtained from 50% of the duration. Further, we compared features extracted from reading-a-story to counting tasks. Our results show that the number of reproducible features (out of 125) decreased stepwise with duration reduction. Spectral shape, pitch, and formants reached excellent reproducibility. Mel-frequency cepstral coefficients (MFCCs), loudness, and zero-crossing rate achieved excellent reproducibility only at a longer duration. Reproducibility of source, MFCC derivatives, and voicing probability (VP) was poor. Significant gender differences existed in jitter, MFCC first-derivative, spectral skewness, pitch, VP, and formants. Around 97% of features in both genders were not reproducible across speech tasks, in part due to the short counting task duration. In conclusion, bio-acoustic features are less reproducible in shorter samples and are affected by gender.
ISSN:1534-4320
1558-0210
DOI:10.1109/TNSRE.2022.3143117