GMTA: A Geo-Aware Multi-Agent Task Allocation Approach for Scientific Workflows in Container-Based Cloud
Scientific workflow scheduling is one of the most challenging problems in cloud computing because of the large-scale computing tasks and massive data volumes involved. A cloud system is a distributed system that follows the on-demand resource provisioning and pay-per-use billing model. Therefore, pr...
Gespeichert in:
Veröffentlicht in: | IEEE eTransactions on network and service management 2020-09, Vol.17 (3), p.1568-1581 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Scientific workflow scheduling is one of the most challenging problems in cloud computing because of the large-scale computing tasks and massive data volumes involved. A cloud system is a distributed system that follows the on-demand resource provisioning and pay-per-use billing model. Therefore, practical scheduling approaches are essential for good workflow performance and low overheads. This paper proposes a novel workflow allocation approach, the Geo-aware Multiagent Task Allocation Approach (GMTA), which aims to optimize large-scale scientific workflow execution in container-based clouds. GMTA is an agent-based workflow allocation method that includes a market-like agent negotiation mechanism and a dynamic workflow restructuring strategy. It decreases workflow makespans and traffic overheads by reasonable task replications. Furthermore, the performance of GMTA is verified on real scientific workflows in the CloudSim environment. |
---|---|
ISSN: | 1932-4537 1932-4537 |
DOI: | 10.1109/TNSM.2020.2996304 |