Neurodynamic Programming and Zero-Sum Games for Constrained Control Systems

In this paper, neural networks are used along with two-player policy iterations to solve for the feedback strategies of a continuous-time zero-sum game that appears in L 2 -gain optimal control, suboptimal H infin control, of nonlinear systems affine in input with the control policy having saturatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2008-07, Vol.19 (7), p.1243-1252
Hauptverfasser: Abu-Khalaf, M., Lewis, F.L., Jie Huang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1252
container_issue 7
container_start_page 1243
container_title IEEE transaction on neural networks and learning systems
container_volume 19
creator Abu-Khalaf, M.
Lewis, F.L.
Jie Huang
description In this paper, neural networks are used along with two-player policy iterations to solve for the feedback strategies of a continuous-time zero-sum game that appears in L 2 -gain optimal control, suboptimal H infin control, of nonlinear systems affine in input with the control policy having saturation constraints. The result is a closed-form representation, on a prescribed compact set chosen a priori, of the feedback strategies and the value function that solves the associated Hamilton-Jacobi-Isaacs (HJI) equation. The closed-loop stability, L 2 -gain disturbance attenuation of the neural network saturated control feedback strategy, and uniform convergence results are proven. Finally, this approach is applied to the rotational/translational actuator (RTAC) nonlinear benchmark problem under actuator saturation, offering guaranteed stability and disturbance attenuation.
doi_str_mv 10.1109/TNN.2008.2000204
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNN_2008_2000204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4488043</ieee_id><sourcerecordid>875060453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-fc238d85233264d0ccf8dc42fce151f35234a81ffb09915ddc7041c6970cfe463</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhhdRsFbvgpdFEE9bJx-7mxylaBVLFVovXkLMR9mym9Rk99B_b0qLBy8zA3nmJfNk2TWCCULAH1aLxQQDsH0BDPQkGyFOUQHAyWmagZYFx7g-zy5i3AAgWkI1yt4WZghe75zsGpV_BL8Osusat86l0_mXCb5YDl0-k52JufUhn3oX-yAbZ_R-7oNv8-Uu9qaLl9mZlW00V8c-zj6fn1bTl2L-PnudPs4LRUrcF1ZhwjQrMSG4ohqUskwriq0yqEQ2MYRKhqz9Bs5RqbWqgSJV8RqUNbQi4-z-kLsN_mcwsRddE5VpW-mMH6JgdTot3UsSefuP3PghuPQ5wRHGDCNaJwgOkAo-xmCs2Iamk2EnEIi9W5Hcir1bcXSbVu6OuTIq2dognWri315CkvoKJe7mwDXGmL9nShlLIeQXVWWA_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912282147</pqid></control><display><type>article</type><title>Neurodynamic Programming and Zero-Sum Games for Constrained Control Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Abu-Khalaf, M. ; Lewis, F.L. ; Jie Huang</creator><creatorcontrib>Abu-Khalaf, M. ; Lewis, F.L. ; Jie Huang</creatorcontrib><description>In this paper, neural networks are used along with two-player policy iterations to solve for the feedback strategies of a continuous-time zero-sum game that appears in L 2 -gain optimal control, suboptimal H infin control, of nonlinear systems affine in input with the control policy having saturation constraints. The result is a closed-form representation, on a prescribed compact set chosen a priori, of the feedback strategies and the value function that solves the associated Hamilton-Jacobi-Isaacs (HJI) equation. The closed-loop stability, L 2 -gain disturbance attenuation of the neural network saturated control feedback strategy, and uniform convergence results are proven. Finally, this approach is applied to the rotational/translational actuator (RTAC) nonlinear benchmark problem under actuator saturation, offering guaranteed stability and disturbance attenuation.</description><identifier>ISSN: 1045-9227</identifier><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 1941-0093</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNN.2008.2000204</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Actuator saturation ; Actuators ; Applied sciences ; Artificial intelligence ; Attenuation ; Computer science; control theory; systems ; Connectionism. Neural networks ; Control systems ; Control theory ; Disturbances ; Exact sciences and technology ; Feedback ; H_{\infty} control ; Mathematical analysis ; Neural networks ; Neurodynamics ; Neurofeedback ; Nonlinear control systems ; Nonlinear systems ; Optimal control ; Policies ; policy iterations ; Stability ; Strategy ; zero-sum games</subject><ispartof>IEEE transaction on neural networks and learning systems, 2008-07, Vol.19 (7), p.1243-1252</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-fc238d85233264d0ccf8dc42fce151f35234a81ffb09915ddc7041c6970cfe463</citedby><cites>FETCH-LOGICAL-c352t-fc238d85233264d0ccf8dc42fce151f35234a81ffb09915ddc7041c6970cfe463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4488043$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4488043$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20494161$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Abu-Khalaf, M.</creatorcontrib><creatorcontrib>Lewis, F.L.</creatorcontrib><creatorcontrib>Jie Huang</creatorcontrib><title>Neurodynamic Programming and Zero-Sum Games for Constrained Control Systems</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNN</addtitle><description>In this paper, neural networks are used along with two-player policy iterations to solve for the feedback strategies of a continuous-time zero-sum game that appears in L 2 -gain optimal control, suboptimal H infin control, of nonlinear systems affine in input with the control policy having saturation constraints. The result is a closed-form representation, on a prescribed compact set chosen a priori, of the feedback strategies and the value function that solves the associated Hamilton-Jacobi-Isaacs (HJI) equation. The closed-loop stability, L 2 -gain disturbance attenuation of the neural network saturated control feedback strategy, and uniform convergence results are proven. Finally, this approach is applied to the rotational/translational actuator (RTAC) nonlinear benchmark problem under actuator saturation, offering guaranteed stability and disturbance attenuation.</description><subject>Actuator saturation</subject><subject>Actuators</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Attenuation</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Control systems</subject><subject>Control theory</subject><subject>Disturbances</subject><subject>Exact sciences and technology</subject><subject>Feedback</subject><subject>H_{\infty} control</subject><subject>Mathematical analysis</subject><subject>Neural networks</subject><subject>Neurodynamics</subject><subject>Neurofeedback</subject><subject>Nonlinear control systems</subject><subject>Nonlinear systems</subject><subject>Optimal control</subject><subject>Policies</subject><subject>policy iterations</subject><subject>Stability</subject><subject>Strategy</subject><subject>zero-sum games</subject><issn>1045-9227</issn><issn>2162-237X</issn><issn>1941-0093</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhhdRsFbvgpdFEE9bJx-7mxylaBVLFVovXkLMR9mym9Rk99B_b0qLBy8zA3nmJfNk2TWCCULAH1aLxQQDsH0BDPQkGyFOUQHAyWmagZYFx7g-zy5i3AAgWkI1yt4WZghe75zsGpV_BL8Osusat86l0_mXCb5YDl0-k52JufUhn3oX-yAbZ_R-7oNv8-Uu9qaLl9mZlW00V8c-zj6fn1bTl2L-PnudPs4LRUrcF1ZhwjQrMSG4ohqUskwriq0yqEQ2MYRKhqz9Bs5RqbWqgSJV8RqUNbQi4-z-kLsN_mcwsRddE5VpW-mMH6JgdTot3UsSefuP3PghuPQ5wRHGDCNaJwgOkAo-xmCs2Iamk2EnEIi9W5Hcir1bcXSbVu6OuTIq2dognWri315CkvoKJe7mwDXGmL9nShlLIeQXVWWA_g</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Abu-Khalaf, M.</creator><creator>Lewis, F.L.</creator><creator>Jie Huang</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20080701</creationdate><title>Neurodynamic Programming and Zero-Sum Games for Constrained Control Systems</title><author>Abu-Khalaf, M. ; Lewis, F.L. ; Jie Huang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-fc238d85233264d0ccf8dc42fce151f35234a81ffb09915ddc7041c6970cfe463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Actuator saturation</topic><topic>Actuators</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Attenuation</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Control systems</topic><topic>Control theory</topic><topic>Disturbances</topic><topic>Exact sciences and technology</topic><topic>Feedback</topic><topic>H_{\infty} control</topic><topic>Mathematical analysis</topic><topic>Neural networks</topic><topic>Neurodynamics</topic><topic>Neurofeedback</topic><topic>Nonlinear control systems</topic><topic>Nonlinear systems</topic><topic>Optimal control</topic><topic>Policies</topic><topic>policy iterations</topic><topic>Stability</topic><topic>Strategy</topic><topic>zero-sum games</topic><toplevel>online_resources</toplevel><creatorcontrib>Abu-Khalaf, M.</creatorcontrib><creatorcontrib>Lewis, F.L.</creatorcontrib><creatorcontrib>Jie Huang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abu-Khalaf, M.</au><au>Lewis, F.L.</au><au>Jie Huang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neurodynamic Programming and Zero-Sum Games for Constrained Control Systems</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNN</stitle><date>2008-07-01</date><risdate>2008</risdate><volume>19</volume><issue>7</issue><spage>1243</spage><epage>1252</epage><pages>1243-1252</pages><issn>1045-9227</issn><issn>2162-237X</issn><eissn>1941-0093</eissn><eissn>2162-2388</eissn><coden>ITNNEP</coden><abstract>In this paper, neural networks are used along with two-player policy iterations to solve for the feedback strategies of a continuous-time zero-sum game that appears in L 2 -gain optimal control, suboptimal H infin control, of nonlinear systems affine in input with the control policy having saturation constraints. The result is a closed-form representation, on a prescribed compact set chosen a priori, of the feedback strategies and the value function that solves the associated Hamilton-Jacobi-Isaacs (HJI) equation. The closed-loop stability, L 2 -gain disturbance attenuation of the neural network saturated control feedback strategy, and uniform convergence results are proven. Finally, this approach is applied to the rotational/translational actuator (RTAC) nonlinear benchmark problem under actuator saturation, offering guaranteed stability and disturbance attenuation.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TNN.2008.2000204</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1045-9227
ispartof IEEE transaction on neural networks and learning systems, 2008-07, Vol.19 (7), p.1243-1252
issn 1045-9227
2162-237X
1941-0093
2162-2388
language eng
recordid cdi_crossref_primary_10_1109_TNN_2008_2000204
source IEEE Electronic Library (IEL)
subjects Actuator saturation
Actuators
Applied sciences
Artificial intelligence
Attenuation
Computer science
control theory
systems
Connectionism. Neural networks
Control systems
Control theory
Disturbances
Exact sciences and technology
Feedback
H_{\infty} control
Mathematical analysis
Neural networks
Neurodynamics
Neurofeedback
Nonlinear control systems
Nonlinear systems
Optimal control
Policies
policy iterations
Stability
Strategy
zero-sum games
title Neurodynamic Programming and Zero-Sum Games for Constrained Control Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T00%3A08%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neurodynamic%20Programming%20and%20Zero-Sum%20Games%20for%20Constrained%20Control%20Systems&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Abu-Khalaf,%20M.&rft.date=2008-07-01&rft.volume=19&rft.issue=7&rft.spage=1243&rft.epage=1252&rft.pages=1243-1252&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/TNN.2008.2000204&rft_dat=%3Cproquest_RIE%3E875060453%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912282147&rft_id=info:pmid/&rft_ieee_id=4488043&rfr_iscdi=true