Neurodynamic Programming and Zero-Sum Games for Constrained Control Systems

In this paper, neural networks are used along with two-player policy iterations to solve for the feedback strategies of a continuous-time zero-sum game that appears in L 2 -gain optimal control, suboptimal H infin control, of nonlinear systems affine in input with the control policy having saturatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2008-07, Vol.19 (7), p.1243-1252
Hauptverfasser: Abu-Khalaf, M., Lewis, F.L., Jie Huang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, neural networks are used along with two-player policy iterations to solve for the feedback strategies of a continuous-time zero-sum game that appears in L 2 -gain optimal control, suboptimal H infin control, of nonlinear systems affine in input with the control policy having saturation constraints. The result is a closed-form representation, on a prescribed compact set chosen a priori, of the feedback strategies and the value function that solves the associated Hamilton-Jacobi-Isaacs (HJI) equation. The closed-loop stability, L 2 -gain disturbance attenuation of the neural network saturated control feedback strategy, and uniform convergence results are proven. Finally, this approach is applied to the rotational/translational actuator (RTAC) nonlinear benchmark problem under actuator saturation, offering guaranteed stability and disturbance attenuation.
ISSN:1045-9227
2162-237X
1941-0093
2162-2388
DOI:10.1109/TNN.2008.2000204