Batch map extensions of the kernel-based maximum entropy learning rule
In this letter, two batch-map extensions are described for the kernel-based maximum entropy learning rule (kMER). In the first, the weights are iteratively set to weighted component-wise medians, while in the second the generalized median is used, enabling kMER to process symbolic data. Simulations...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2006-03, Vol.17 (2), p.529-532 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this letter, two batch-map extensions are described for the kernel-based maximum entropy learning rule (kMER). In the first, the weights are iteratively set to weighted component-wise medians, while in the second the generalized median is used, enabling kMER to process symbolic data. Simulations are performed to illustrate the extensions. |
---|---|
ISSN: | 1045-9227 2162-237X 1941-0093 2162-2388 |
DOI: | 10.1109/TNN.2006.871722 |