Hyperspectral Blind Unmixing Using a Double Deep Image Prior
With the rise of machine learning, hyperspectral image (HSI) unmixing problems have been tackled using learning-based methods. However, physically meaningful unmixing results are not guaranteed without proper guidance. In this work, we propose an unsupervised framework inspired by deep image prior (...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2024-11, Vol.35 (11), p.16478-16492 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With the rise of machine learning, hyperspectral image (HSI) unmixing problems have been tackled using learning-based methods. However, physically meaningful unmixing results are not guaranteed without proper guidance. In this work, we propose an unsupervised framework inspired by deep image prior (DIP) that can be used for both linear and nonlinear blind unmixing models. The framework consists of three modules: 1) an Endmember estimation module using DIP (EDIP); 2) an Abundance estimation module using DIP (ADIP); and 3) a mixing module (MM). EDIP and ADIP modules generate endmembers and abundances, respectively, while MM produces a reconstruction of the HSI observations based on the postulated unmixing model. We introduce a composite loss function that applies to both linear and nonlinear unmixing models to generate meaningful unmixing results. In addition, we propose an adaptive loss weight strategy for better unmixing results in nonlinear mixing scenarios. The proposed methods outperform state-of-the-art unmixing algorithms in extensive experiments conducted on both synthetic and real datasets. |
---|---|
ISSN: | 2162-237X 2162-2388 2162-2388 |
DOI: | 10.1109/TNNLS.2023.3294714 |