Self-Supervised Deep Multiview Spectral Clustering
Multiview spectral clustering has received considerable attention in the past decades and still has great potential due to its unsupervised integration manner. It is well known that pairwise constraints boost the clustering process to a great extent. Nevertheless, the constraints are usually marked...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2024-03, Vol.35 (3), p.1-10 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 35 |
creator | Zong, Linlin Miao, Faqiang Zhang, Xianchao Liang, Wenxin Xu, Bo |
description | Multiview spectral clustering has received considerable attention in the past decades and still has great potential due to its unsupervised integration manner. It is well known that pairwise constraints boost the clustering process to a great extent. Nevertheless, the constraints are usually marked by human beings. To ameliorate the performance of multiview spectral clustering and alleviate the consumption of human resources, we propose self-supervised multiview spectral clustering with a small number of automatically retrieved pairwise constraints. First, the fused multiple autoencoders are used to extract the latent consistent feature of multiple views. Second, the pairwise constraints are achieved based on the commonality among multiple views. Then, the pairwise constraints are propagated through the neural network with historical memory. Finally, the propagated constraints are used to optimize the fused affinity matrix of spectral clustering. Our experiments on four benchmark datasets show the effectiveness of our proposed approach. |
doi_str_mv | 10.1109/TNNLS.2022.3195780 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNNLS_2022_3195780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9853217</ieee_id><sourcerecordid>2700313502</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-5b68645eeed9f27b34267c476412b9b5c4ba6ca632ff08f85aeb854e86cf6cc43</originalsourceid><addsrcrecordid>eNpdkEtLw0AQgBdRbKn9AwpS8OIldd_ZPUp9Qq2HVPC2JNtZSUmbuJtU_Pdube3BuczAfDPMfAidEzwmBOub-Ww2zcYUUzpmRItU4SPUp0TShDKljg91-t5DwxCWOIbEQnJ9inpMaM4xJn1EM6hcknUN-E0ZYDG6A2hGL13VlpsSvkZZA7b1eTWaVF1owZfrjzN04vIqwHCfB-jt4X4-eUqmr4_Pk9tpYpkgbSIKqSQXALDQjqYF41SmlqeSE1roQlhe5NLmklHnsHJK5FAowUFJ66S1nA3Q9W5v4-vPDkJrVmWwUFX5GuouGJpizAgTmEb06h-6rDu_jtcZqhmTJP6uIkV3lPV1CB6caXy5yv23IdhspZpfqWYr1eylxqHL_equWMHiMPKnMAIXO6CMrx7aWglGScp-ANMfeYU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933610068</pqid></control><display><type>article</type><title>Self-Supervised Deep Multiview Spectral Clustering</title><source>IEEE Electronic Library (IEL)</source><creator>Zong, Linlin ; Miao, Faqiang ; Zhang, Xianchao ; Liang, Wenxin ; Xu, Bo</creator><creatorcontrib>Zong, Linlin ; Miao, Faqiang ; Zhang, Xianchao ; Liang, Wenxin ; Xu, Bo</creatorcontrib><description>Multiview spectral clustering has received considerable attention in the past decades and still has great potential due to its unsupervised integration manner. It is well known that pairwise constraints boost the clustering process to a great extent. Nevertheless, the constraints are usually marked by human beings. To ameliorate the performance of multiview spectral clustering and alleviate the consumption of human resources, we propose self-supervised multiview spectral clustering with a small number of automatically retrieved pairwise constraints. First, the fused multiple autoencoders are used to extract the latent consistent feature of multiple views. Second, the pairwise constraints are achieved based on the commonality among multiple views. Then, the pairwise constraints are propagated through the neural network with historical memory. Finally, the propagated constraints are used to optimize the fused affinity matrix of spectral clustering. Our experiments on four benchmark datasets show the effectiveness of our proposed approach.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2022.3195780</identifier><identifier>PMID: 35944001</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Clustering ; Clustering algorithms ; Commonality ; Constraint propagation network ; Data mining ; Decoding ; deep multiview ; Feature extraction ; Matrix decomposition ; Neural networks ; self-supervised ; Software ; spectral clustering ; Task analysis</subject><ispartof>IEEE transaction on neural networks and learning systems, 2024-03, Vol.35 (3), p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-5b68645eeed9f27b34267c476412b9b5c4ba6ca632ff08f85aeb854e86cf6cc43</citedby><cites>FETCH-LOGICAL-c351t-5b68645eeed9f27b34267c476412b9b5c4ba6ca632ff08f85aeb854e86cf6cc43</cites><orcidid>0000-0002-0180-3740 ; 0000-0001-5453-978X ; 0000-0002-1116-1016</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9853217$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9853217$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35944001$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zong, Linlin</creatorcontrib><creatorcontrib>Miao, Faqiang</creatorcontrib><creatorcontrib>Zhang, Xianchao</creatorcontrib><creatorcontrib>Liang, Wenxin</creatorcontrib><creatorcontrib>Xu, Bo</creatorcontrib><title>Self-Supervised Deep Multiview Spectral Clustering</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Multiview spectral clustering has received considerable attention in the past decades and still has great potential due to its unsupervised integration manner. It is well known that pairwise constraints boost the clustering process to a great extent. Nevertheless, the constraints are usually marked by human beings. To ameliorate the performance of multiview spectral clustering and alleviate the consumption of human resources, we propose self-supervised multiview spectral clustering with a small number of automatically retrieved pairwise constraints. First, the fused multiple autoencoders are used to extract the latent consistent feature of multiple views. Second, the pairwise constraints are achieved based on the commonality among multiple views. Then, the pairwise constraints are propagated through the neural network with historical memory. Finally, the propagated constraints are used to optimize the fused affinity matrix of spectral clustering. Our experiments on four benchmark datasets show the effectiveness of our proposed approach.</description><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Commonality</subject><subject>Constraint propagation network</subject><subject>Data mining</subject><subject>Decoding</subject><subject>deep multiview</subject><subject>Feature extraction</subject><subject>Matrix decomposition</subject><subject>Neural networks</subject><subject>self-supervised</subject><subject>Software</subject><subject>spectral clustering</subject><subject>Task analysis</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLw0AQgBdRbKn9AwpS8OIldd_ZPUp9Qq2HVPC2JNtZSUmbuJtU_Pdube3BuczAfDPMfAidEzwmBOub-Ww2zcYUUzpmRItU4SPUp0TShDKljg91-t5DwxCWOIbEQnJ9inpMaM4xJn1EM6hcknUN-E0ZYDG6A2hGL13VlpsSvkZZA7b1eTWaVF1owZfrjzN04vIqwHCfB-jt4X4-eUqmr4_Pk9tpYpkgbSIKqSQXALDQjqYF41SmlqeSE1roQlhe5NLmklHnsHJK5FAowUFJ66S1nA3Q9W5v4-vPDkJrVmWwUFX5GuouGJpizAgTmEb06h-6rDu_jtcZqhmTJP6uIkV3lPV1CB6caXy5yv23IdhspZpfqWYr1eylxqHL_equWMHiMPKnMAIXO6CMrx7aWglGScp-ANMfeYU</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Zong, Linlin</creator><creator>Miao, Faqiang</creator><creator>Zhang, Xianchao</creator><creator>Liang, Wenxin</creator><creator>Xu, Bo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0180-3740</orcidid><orcidid>https://orcid.org/0000-0001-5453-978X</orcidid><orcidid>https://orcid.org/0000-0002-1116-1016</orcidid></search><sort><creationdate>20240301</creationdate><title>Self-Supervised Deep Multiview Spectral Clustering</title><author>Zong, Linlin ; Miao, Faqiang ; Zhang, Xianchao ; Liang, Wenxin ; Xu, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-5b68645eeed9f27b34267c476412b9b5c4ba6ca632ff08f85aeb854e86cf6cc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Commonality</topic><topic>Constraint propagation network</topic><topic>Data mining</topic><topic>Decoding</topic><topic>deep multiview</topic><topic>Feature extraction</topic><topic>Matrix decomposition</topic><topic>Neural networks</topic><topic>self-supervised</topic><topic>Software</topic><topic>spectral clustering</topic><topic>Task analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Zong, Linlin</creatorcontrib><creatorcontrib>Miao, Faqiang</creatorcontrib><creatorcontrib>Zhang, Xianchao</creatorcontrib><creatorcontrib>Liang, Wenxin</creatorcontrib><creatorcontrib>Xu, Bo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zong, Linlin</au><au>Miao, Faqiang</au><au>Zhang, Xianchao</au><au>Liang, Wenxin</au><au>Xu, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Supervised Deep Multiview Spectral Clustering</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>35</volume><issue>3</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Multiview spectral clustering has received considerable attention in the past decades and still has great potential due to its unsupervised integration manner. It is well known that pairwise constraints boost the clustering process to a great extent. Nevertheless, the constraints are usually marked by human beings. To ameliorate the performance of multiview spectral clustering and alleviate the consumption of human resources, we propose self-supervised multiview spectral clustering with a small number of automatically retrieved pairwise constraints. First, the fused multiple autoencoders are used to extract the latent consistent feature of multiple views. Second, the pairwise constraints are achieved based on the commonality among multiple views. Then, the pairwise constraints are propagated through the neural network with historical memory. Finally, the propagated constraints are used to optimize the fused affinity matrix of spectral clustering. Our experiments on four benchmark datasets show the effectiveness of our proposed approach.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35944001</pmid><doi>10.1109/TNNLS.2022.3195780</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0180-3740</orcidid><orcidid>https://orcid.org/0000-0001-5453-978X</orcidid><orcidid>https://orcid.org/0000-0002-1116-1016</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2024-03, Vol.35 (3), p.1-10 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TNNLS_2022_3195780 |
source | IEEE Electronic Library (IEL) |
subjects | Clustering Clustering algorithms Commonality Constraint propagation network Data mining Decoding deep multiview Feature extraction Matrix decomposition Neural networks self-supervised Software spectral clustering Task analysis |
title | Self-Supervised Deep Multiview Spectral Clustering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A03%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Supervised%20Deep%20Multiview%20Spectral%20Clustering&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Zong,%20Linlin&rft.date=2024-03-01&rft.volume=35&rft.issue=3&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2022.3195780&rft_dat=%3Cproquest_RIE%3E2700313502%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2933610068&rft_id=info:pmid/35944001&rft_ieee_id=9853217&rfr_iscdi=true |