Self-Supervised Deep Multiview Spectral Clustering

Multiview spectral clustering has received considerable attention in the past decades and still has great potential due to its unsupervised integration manner. It is well known that pairwise constraints boost the clustering process to a great extent. Nevertheless, the constraints are usually marked...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2024-03, Vol.35 (3), p.1-10
Hauptverfasser: Zong, Linlin, Miao, Faqiang, Zhang, Xianchao, Liang, Wenxin, Xu, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 3
container_start_page 1
container_title IEEE transaction on neural networks and learning systems
container_volume 35
creator Zong, Linlin
Miao, Faqiang
Zhang, Xianchao
Liang, Wenxin
Xu, Bo
description Multiview spectral clustering has received considerable attention in the past decades and still has great potential due to its unsupervised integration manner. It is well known that pairwise constraints boost the clustering process to a great extent. Nevertheless, the constraints are usually marked by human beings. To ameliorate the performance of multiview spectral clustering and alleviate the consumption of human resources, we propose self-supervised multiview spectral clustering with a small number of automatically retrieved pairwise constraints. First, the fused multiple autoencoders are used to extract the latent consistent feature of multiple views. Second, the pairwise constraints are achieved based on the commonality among multiple views. Then, the pairwise constraints are propagated through the neural network with historical memory. Finally, the propagated constraints are used to optimize the fused affinity matrix of spectral clustering. Our experiments on four benchmark datasets show the effectiveness of our proposed approach.
doi_str_mv 10.1109/TNNLS.2022.3195780
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNNLS_2022_3195780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9853217</ieee_id><sourcerecordid>2700313502</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-5b68645eeed9f27b34267c476412b9b5c4ba6ca632ff08f85aeb854e86cf6cc43</originalsourceid><addsrcrecordid>eNpdkEtLw0AQgBdRbKn9AwpS8OIldd_ZPUp9Qq2HVPC2JNtZSUmbuJtU_Pdube3BuczAfDPMfAidEzwmBOub-Ww2zcYUUzpmRItU4SPUp0TShDKljg91-t5DwxCWOIbEQnJ9inpMaM4xJn1EM6hcknUN-E0ZYDG6A2hGL13VlpsSvkZZA7b1eTWaVF1owZfrjzN04vIqwHCfB-jt4X4-eUqmr4_Pk9tpYpkgbSIKqSQXALDQjqYF41SmlqeSE1roQlhe5NLmklHnsHJK5FAowUFJ66S1nA3Q9W5v4-vPDkJrVmWwUFX5GuouGJpizAgTmEb06h-6rDu_jtcZqhmTJP6uIkV3lPV1CB6caXy5yv23IdhspZpfqWYr1eylxqHL_equWMHiMPKnMAIXO6CMrx7aWglGScp-ANMfeYU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933610068</pqid></control><display><type>article</type><title>Self-Supervised Deep Multiview Spectral Clustering</title><source>IEEE Electronic Library (IEL)</source><creator>Zong, Linlin ; Miao, Faqiang ; Zhang, Xianchao ; Liang, Wenxin ; Xu, Bo</creator><creatorcontrib>Zong, Linlin ; Miao, Faqiang ; Zhang, Xianchao ; Liang, Wenxin ; Xu, Bo</creatorcontrib><description>Multiview spectral clustering has received considerable attention in the past decades and still has great potential due to its unsupervised integration manner. It is well known that pairwise constraints boost the clustering process to a great extent. Nevertheless, the constraints are usually marked by human beings. To ameliorate the performance of multiview spectral clustering and alleviate the consumption of human resources, we propose self-supervised multiview spectral clustering with a small number of automatically retrieved pairwise constraints. First, the fused multiple autoencoders are used to extract the latent consistent feature of multiple views. Second, the pairwise constraints are achieved based on the commonality among multiple views. Then, the pairwise constraints are propagated through the neural network with historical memory. Finally, the propagated constraints are used to optimize the fused affinity matrix of spectral clustering. Our experiments on four benchmark datasets show the effectiveness of our proposed approach.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2022.3195780</identifier><identifier>PMID: 35944001</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Clustering ; Clustering algorithms ; Commonality ; Constraint propagation network ; Data mining ; Decoding ; deep multiview ; Feature extraction ; Matrix decomposition ; Neural networks ; self-supervised ; Software ; spectral clustering ; Task analysis</subject><ispartof>IEEE transaction on neural networks and learning systems, 2024-03, Vol.35 (3), p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-5b68645eeed9f27b34267c476412b9b5c4ba6ca632ff08f85aeb854e86cf6cc43</citedby><cites>FETCH-LOGICAL-c351t-5b68645eeed9f27b34267c476412b9b5c4ba6ca632ff08f85aeb854e86cf6cc43</cites><orcidid>0000-0002-0180-3740 ; 0000-0001-5453-978X ; 0000-0002-1116-1016</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9853217$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9853217$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35944001$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zong, Linlin</creatorcontrib><creatorcontrib>Miao, Faqiang</creatorcontrib><creatorcontrib>Zhang, Xianchao</creatorcontrib><creatorcontrib>Liang, Wenxin</creatorcontrib><creatorcontrib>Xu, Bo</creatorcontrib><title>Self-Supervised Deep Multiview Spectral Clustering</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Multiview spectral clustering has received considerable attention in the past decades and still has great potential due to its unsupervised integration manner. It is well known that pairwise constraints boost the clustering process to a great extent. Nevertheless, the constraints are usually marked by human beings. To ameliorate the performance of multiview spectral clustering and alleviate the consumption of human resources, we propose self-supervised multiview spectral clustering with a small number of automatically retrieved pairwise constraints. First, the fused multiple autoencoders are used to extract the latent consistent feature of multiple views. Second, the pairwise constraints are achieved based on the commonality among multiple views. Then, the pairwise constraints are propagated through the neural network with historical memory. Finally, the propagated constraints are used to optimize the fused affinity matrix of spectral clustering. Our experiments on four benchmark datasets show the effectiveness of our proposed approach.</description><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Commonality</subject><subject>Constraint propagation network</subject><subject>Data mining</subject><subject>Decoding</subject><subject>deep multiview</subject><subject>Feature extraction</subject><subject>Matrix decomposition</subject><subject>Neural networks</subject><subject>self-supervised</subject><subject>Software</subject><subject>spectral clustering</subject><subject>Task analysis</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLw0AQgBdRbKn9AwpS8OIldd_ZPUp9Qq2HVPC2JNtZSUmbuJtU_Pdube3BuczAfDPMfAidEzwmBOub-Ww2zcYUUzpmRItU4SPUp0TShDKljg91-t5DwxCWOIbEQnJ9inpMaM4xJn1EM6hcknUN-E0ZYDG6A2hGL13VlpsSvkZZA7b1eTWaVF1owZfrjzN04vIqwHCfB-jt4X4-eUqmr4_Pk9tpYpkgbSIKqSQXALDQjqYF41SmlqeSE1roQlhe5NLmklHnsHJK5FAowUFJ66S1nA3Q9W5v4-vPDkJrVmWwUFX5GuouGJpizAgTmEb06h-6rDu_jtcZqhmTJP6uIkV3lPV1CB6caXy5yv23IdhspZpfqWYr1eylxqHL_equWMHiMPKnMAIXO6CMrx7aWglGScp-ANMfeYU</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Zong, Linlin</creator><creator>Miao, Faqiang</creator><creator>Zhang, Xianchao</creator><creator>Liang, Wenxin</creator><creator>Xu, Bo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0180-3740</orcidid><orcidid>https://orcid.org/0000-0001-5453-978X</orcidid><orcidid>https://orcid.org/0000-0002-1116-1016</orcidid></search><sort><creationdate>20240301</creationdate><title>Self-Supervised Deep Multiview Spectral Clustering</title><author>Zong, Linlin ; Miao, Faqiang ; Zhang, Xianchao ; Liang, Wenxin ; Xu, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-5b68645eeed9f27b34267c476412b9b5c4ba6ca632ff08f85aeb854e86cf6cc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Commonality</topic><topic>Constraint propagation network</topic><topic>Data mining</topic><topic>Decoding</topic><topic>deep multiview</topic><topic>Feature extraction</topic><topic>Matrix decomposition</topic><topic>Neural networks</topic><topic>self-supervised</topic><topic>Software</topic><topic>spectral clustering</topic><topic>Task analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Zong, Linlin</creatorcontrib><creatorcontrib>Miao, Faqiang</creatorcontrib><creatorcontrib>Zhang, Xianchao</creatorcontrib><creatorcontrib>Liang, Wenxin</creatorcontrib><creatorcontrib>Xu, Bo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zong, Linlin</au><au>Miao, Faqiang</au><au>Zhang, Xianchao</au><au>Liang, Wenxin</au><au>Xu, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Supervised Deep Multiview Spectral Clustering</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>35</volume><issue>3</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Multiview spectral clustering has received considerable attention in the past decades and still has great potential due to its unsupervised integration manner. It is well known that pairwise constraints boost the clustering process to a great extent. Nevertheless, the constraints are usually marked by human beings. To ameliorate the performance of multiview spectral clustering and alleviate the consumption of human resources, we propose self-supervised multiview spectral clustering with a small number of automatically retrieved pairwise constraints. First, the fused multiple autoencoders are used to extract the latent consistent feature of multiple views. Second, the pairwise constraints are achieved based on the commonality among multiple views. Then, the pairwise constraints are propagated through the neural network with historical memory. Finally, the propagated constraints are used to optimize the fused affinity matrix of spectral clustering. Our experiments on four benchmark datasets show the effectiveness of our proposed approach.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35944001</pmid><doi>10.1109/TNNLS.2022.3195780</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0180-3740</orcidid><orcidid>https://orcid.org/0000-0001-5453-978X</orcidid><orcidid>https://orcid.org/0000-0002-1116-1016</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2024-03, Vol.35 (3), p.1-10
issn 2162-237X
2162-2388
language eng
recordid cdi_crossref_primary_10_1109_TNNLS_2022_3195780
source IEEE Electronic Library (IEL)
subjects Clustering
Clustering algorithms
Commonality
Constraint propagation network
Data mining
Decoding
deep multiview
Feature extraction
Matrix decomposition
Neural networks
self-supervised
Software
spectral clustering
Task analysis
title Self-Supervised Deep Multiview Spectral Clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A03%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Supervised%20Deep%20Multiview%20Spectral%20Clustering&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Zong,%20Linlin&rft.date=2024-03-01&rft.volume=35&rft.issue=3&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2022.3195780&rft_dat=%3Cproquest_RIE%3E2700313502%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2933610068&rft_id=info:pmid/35944001&rft_ieee_id=9853217&rfr_iscdi=true