Self-Supervised Deep Multiview Spectral Clustering
Multiview spectral clustering has received considerable attention in the past decades and still has great potential due to its unsupervised integration manner. It is well known that pairwise constraints boost the clustering process to a great extent. Nevertheless, the constraints are usually marked...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2024-03, Vol.35 (3), p.1-10 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multiview spectral clustering has received considerable attention in the past decades and still has great potential due to its unsupervised integration manner. It is well known that pairwise constraints boost the clustering process to a great extent. Nevertheless, the constraints are usually marked by human beings. To ameliorate the performance of multiview spectral clustering and alleviate the consumption of human resources, we propose self-supervised multiview spectral clustering with a small number of automatically retrieved pairwise constraints. First, the fused multiple autoencoders are used to extract the latent consistent feature of multiple views. Second, the pairwise constraints are achieved based on the commonality among multiple views. Then, the pairwise constraints are propagated through the neural network with historical memory. Finally, the propagated constraints are used to optimize the fused affinity matrix of spectral clustering. Our experiments on four benchmark datasets show the effectiveness of our proposed approach. |
---|---|
ISSN: | 2162-237X 2162-2388 |
DOI: | 10.1109/TNNLS.2022.3195780 |