Learning Kernel Extended Dictionary for Face Recognition
A sparse representation classifier (SRC) and a kernel discriminant analysis (KDA) are two successful methods for face recognition. An SRC is good at dealing with occlusion, while a KDA does well in suppressing intraclass variations. In this paper, we propose kernel extended dictionary (KED) for face...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2017-05, Vol.28 (5), p.1082-1094 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1094 |
---|---|
container_issue | 5 |
container_start_page | 1082 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 28 |
creator | Huang, Ke-Kun Dai, Dao-Qing Ren, Chuan-Xian Lai, Zhao-Rong |
description | A sparse representation classifier (SRC) and a kernel discriminant analysis (KDA) are two successful methods for face recognition. An SRC is good at dealing with occlusion, while a KDA does well in suppressing intraclass variations. In this paper, we propose kernel extended dictionary (KED) for face recognition, which provides an efficient way for combining KDA and SRC. We first learn several kernel principal components of occlusion variations as an occlusion model, which can represent the possible occlusion variations efficiently. Then, the occlusion model is projected by KDA to get the KED, which can be computed via the same kernel trick as new testing samples. Finally, we use structured SRC for classification, which is fast as only a small number of atoms are appended to the basic dictionary, and the feature dimension is low. We also extend KED to multikernel space to fuse different types of features at kernel level. Experiments are done on several large-scale data sets, demonstrating that not only does KED get impressive results for nonoccluded samples, but it also handles the occlusion well without overfitting, even with a single gallery sample per subject. |
doi_str_mv | 10.1109/TNNLS.2016.2522431 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNNLS_2016_2522431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7407377</ieee_id><sourcerecordid>1891107603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-dfbb95acacb2b86df3d252e269c75805db1b474a7f306c7868fabdfbc9844d873</originalsourceid><addsrcrecordid>eNpdkF1LwzAUhoMoTub-gIIUvPGmMx9tPi5lbiqWCTrBu5Kkp6OjS2fagv57Mzd3YW4STp73cM6D0AXBY0Kwul3M59nbmGLCxzSlNGHkCJ1RwmlMmZTHh7f4GKBR265wOBynPFGnaEC5VFhRdYZkBtq7yi2jZ_AO6mj61YEroIjuK9tVjdP-OyobH820hegVbLN01bZ-jk5KXbcw2t9D9D6bLiaPcfby8DS5y2LLUtLFRWmMSrXV1lAjeVGyIowLlCsrUonTwhCTiESLkmFuheSy1CaErJJJUkjBhuhm13fjm88e2i5fV62FutYOmr7NiaScp0SmNKDX_9BV03sXpguUCtYExyxQdEdZ37SthzLf-God1swJzrdq81-1-VZtvlcbQlf71r1ZQ3GI_IkMwOUOqADg8C0SLJgQ7AduTnwC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891107603</pqid></control><display><type>article</type><title>Learning Kernel Extended Dictionary for Face Recognition</title><source>IEEE/IET Electronic Library</source><creator>Huang, Ke-Kun ; Dai, Dao-Qing ; Ren, Chuan-Xian ; Lai, Zhao-Rong</creator><creatorcontrib>Huang, Ke-Kun ; Dai, Dao-Qing ; Ren, Chuan-Xian ; Lai, Zhao-Rong</creatorcontrib><description>A sparse representation classifier (SRC) and a kernel discriminant analysis (KDA) are two successful methods for face recognition. An SRC is good at dealing with occlusion, while a KDA does well in suppressing intraclass variations. In this paper, we propose kernel extended dictionary (KED) for face recognition, which provides an efficient way for combining KDA and SRC. We first learn several kernel principal components of occlusion variations as an occlusion model, which can represent the possible occlusion variations efficiently. Then, the occlusion model is projected by KDA to get the KED, which can be computed via the same kernel trick as new testing samples. Finally, we use structured SRC for classification, which is fast as only a small number of atoms are appended to the basic dictionary, and the feature dimension is low. We also extend KED to multikernel space to fuse different types of features at kernel level. Experiments are done on several large-scale data sets, demonstrating that not only does KED get impressive results for nonoccluded samples, but it also handles the occlusion well without overfitting, even with a single gallery sample per subject.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2016.2522431</identifier><identifier>PMID: 26890929</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Atomic properties ; Dictionaries ; Discriminant analysis ; Face ; Face occlusion ; Face recognition ; Feature extraction ; Kernel ; kernel discriminant analysis (KDA) ; Kernels ; Occlusion ; Pattern recognition ; Probes ; sparse representation classifier (SRC) ; Training ; Variation</subject><ispartof>IEEE transaction on neural networks and learning systems, 2017-05, Vol.28 (5), p.1082-1094</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-dfbb95acacb2b86df3d252e269c75805db1b474a7f306c7868fabdfbc9844d873</citedby><cites>FETCH-LOGICAL-c351t-dfbb95acacb2b86df3d252e269c75805db1b474a7f306c7868fabdfbc9844d873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7407377$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7407377$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26890929$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Ke-Kun</creatorcontrib><creatorcontrib>Dai, Dao-Qing</creatorcontrib><creatorcontrib>Ren, Chuan-Xian</creatorcontrib><creatorcontrib>Lai, Zhao-Rong</creatorcontrib><title>Learning Kernel Extended Dictionary for Face Recognition</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>A sparse representation classifier (SRC) and a kernel discriminant analysis (KDA) are two successful methods for face recognition. An SRC is good at dealing with occlusion, while a KDA does well in suppressing intraclass variations. In this paper, we propose kernel extended dictionary (KED) for face recognition, which provides an efficient way for combining KDA and SRC. We first learn several kernel principal components of occlusion variations as an occlusion model, which can represent the possible occlusion variations efficiently. Then, the occlusion model is projected by KDA to get the KED, which can be computed via the same kernel trick as new testing samples. Finally, we use structured SRC for classification, which is fast as only a small number of atoms are appended to the basic dictionary, and the feature dimension is low. We also extend KED to multikernel space to fuse different types of features at kernel level. Experiments are done on several large-scale data sets, demonstrating that not only does KED get impressive results for nonoccluded samples, but it also handles the occlusion well without overfitting, even with a single gallery sample per subject.</description><subject>Atomic properties</subject><subject>Dictionaries</subject><subject>Discriminant analysis</subject><subject>Face</subject><subject>Face occlusion</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Kernel</subject><subject>kernel discriminant analysis (KDA)</subject><subject>Kernels</subject><subject>Occlusion</subject><subject>Pattern recognition</subject><subject>Probes</subject><subject>sparse representation classifier (SRC)</subject><subject>Training</subject><subject>Variation</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkF1LwzAUhoMoTub-gIIUvPGmMx9tPi5lbiqWCTrBu5Kkp6OjS2fagv57Mzd3YW4STp73cM6D0AXBY0Kwul3M59nbmGLCxzSlNGHkCJ1RwmlMmZTHh7f4GKBR265wOBynPFGnaEC5VFhRdYZkBtq7yi2jZ_AO6mj61YEroIjuK9tVjdP-OyobH820hegVbLN01bZ-jk5KXbcw2t9D9D6bLiaPcfby8DS5y2LLUtLFRWmMSrXV1lAjeVGyIowLlCsrUonTwhCTiESLkmFuheSy1CaErJJJUkjBhuhm13fjm88e2i5fV62FutYOmr7NiaScp0SmNKDX_9BV03sXpguUCtYExyxQdEdZ37SthzLf-God1swJzrdq81-1-VZtvlcbQlf71r1ZQ3GI_IkMwOUOqADg8C0SLJgQ7AduTnwC</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Huang, Ke-Kun</creator><creator>Dai, Dao-Qing</creator><creator>Ren, Chuan-Xian</creator><creator>Lai, Zhao-Rong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20170501</creationdate><title>Learning Kernel Extended Dictionary for Face Recognition</title><author>Huang, Ke-Kun ; Dai, Dao-Qing ; Ren, Chuan-Xian ; Lai, Zhao-Rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-dfbb95acacb2b86df3d252e269c75805db1b474a7f306c7868fabdfbc9844d873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Atomic properties</topic><topic>Dictionaries</topic><topic>Discriminant analysis</topic><topic>Face</topic><topic>Face occlusion</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Kernel</topic><topic>kernel discriminant analysis (KDA)</topic><topic>Kernels</topic><topic>Occlusion</topic><topic>Pattern recognition</topic><topic>Probes</topic><topic>sparse representation classifier (SRC)</topic><topic>Training</topic><topic>Variation</topic><toplevel>online_resources</toplevel><creatorcontrib>Huang, Ke-Kun</creatorcontrib><creatorcontrib>Dai, Dao-Qing</creatorcontrib><creatorcontrib>Ren, Chuan-Xian</creatorcontrib><creatorcontrib>Lai, Zhao-Rong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Ke-Kun</au><au>Dai, Dao-Qing</au><au>Ren, Chuan-Xian</au><au>Lai, Zhao-Rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Kernel Extended Dictionary for Face Recognition</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2017-05-01</date><risdate>2017</risdate><volume>28</volume><issue>5</issue><spage>1082</spage><epage>1094</epage><pages>1082-1094</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>A sparse representation classifier (SRC) and a kernel discriminant analysis (KDA) are two successful methods for face recognition. An SRC is good at dealing with occlusion, while a KDA does well in suppressing intraclass variations. In this paper, we propose kernel extended dictionary (KED) for face recognition, which provides an efficient way for combining KDA and SRC. We first learn several kernel principal components of occlusion variations as an occlusion model, which can represent the possible occlusion variations efficiently. Then, the occlusion model is projected by KDA to get the KED, which can be computed via the same kernel trick as new testing samples. Finally, we use structured SRC for classification, which is fast as only a small number of atoms are appended to the basic dictionary, and the feature dimension is low. We also extend KED to multikernel space to fuse different types of features at kernel level. Experiments are done on several large-scale data sets, demonstrating that not only does KED get impressive results for nonoccluded samples, but it also handles the occlusion well without overfitting, even with a single gallery sample per subject.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26890929</pmid><doi>10.1109/TNNLS.2016.2522431</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2017-05, Vol.28 (5), p.1082-1094 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TNNLS_2016_2522431 |
source | IEEE/IET Electronic Library |
subjects | Atomic properties Dictionaries Discriminant analysis Face Face occlusion Face recognition Feature extraction Kernel kernel discriminant analysis (KDA) Kernels Occlusion Pattern recognition Probes sparse representation classifier (SRC) Training Variation |
title | Learning Kernel Extended Dictionary for Face Recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A21%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Kernel%20Extended%20Dictionary%20for%20Face%20Recognition&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Huang,%20Ke-Kun&rft.date=2017-05-01&rft.volume=28&rft.issue=5&rft.spage=1082&rft.epage=1094&rft.pages=1082-1094&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2016.2522431&rft_dat=%3Cproquest_RIE%3E1891107603%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1891107603&rft_id=info:pmid/26890929&rft_ieee_id=7407377&rfr_iscdi=true |