Learning Kernel Extended Dictionary for Face Recognition

A sparse representation classifier (SRC) and a kernel discriminant analysis (KDA) are two successful methods for face recognition. An SRC is good at dealing with occlusion, while a KDA does well in suppressing intraclass variations. In this paper, we propose kernel extended dictionary (KED) for face...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2017-05, Vol.28 (5), p.1082-1094
Hauptverfasser: Huang, Ke-Kun, Dai, Dao-Qing, Ren, Chuan-Xian, Lai, Zhao-Rong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1094
container_issue 5
container_start_page 1082
container_title IEEE transaction on neural networks and learning systems
container_volume 28
creator Huang, Ke-Kun
Dai, Dao-Qing
Ren, Chuan-Xian
Lai, Zhao-Rong
description A sparse representation classifier (SRC) and a kernel discriminant analysis (KDA) are two successful methods for face recognition. An SRC is good at dealing with occlusion, while a KDA does well in suppressing intraclass variations. In this paper, we propose kernel extended dictionary (KED) for face recognition, which provides an efficient way for combining KDA and SRC. We first learn several kernel principal components of occlusion variations as an occlusion model, which can represent the possible occlusion variations efficiently. Then, the occlusion model is projected by KDA to get the KED, which can be computed via the same kernel trick as new testing samples. Finally, we use structured SRC for classification, which is fast as only a small number of atoms are appended to the basic dictionary, and the feature dimension is low. We also extend KED to multikernel space to fuse different types of features at kernel level. Experiments are done on several large-scale data sets, demonstrating that not only does KED get impressive results for nonoccluded samples, but it also handles the occlusion well without overfitting, even with a single gallery sample per subject.
doi_str_mv 10.1109/TNNLS.2016.2522431
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNNLS_2016_2522431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7407377</ieee_id><sourcerecordid>1891107603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-dfbb95acacb2b86df3d252e269c75805db1b474a7f306c7868fabdfbc9844d873</originalsourceid><addsrcrecordid>eNpdkF1LwzAUhoMoTub-gIIUvPGmMx9tPi5lbiqWCTrBu5Kkp6OjS2fagv57Mzd3YW4STp73cM6D0AXBY0Kwul3M59nbmGLCxzSlNGHkCJ1RwmlMmZTHh7f4GKBR265wOBynPFGnaEC5VFhRdYZkBtq7yi2jZ_AO6mj61YEroIjuK9tVjdP-OyobH820hegVbLN01bZ-jk5KXbcw2t9D9D6bLiaPcfby8DS5y2LLUtLFRWmMSrXV1lAjeVGyIowLlCsrUonTwhCTiESLkmFuheSy1CaErJJJUkjBhuhm13fjm88e2i5fV62FutYOmr7NiaScp0SmNKDX_9BV03sXpguUCtYExyxQdEdZ37SthzLf-God1swJzrdq81-1-VZtvlcbQlf71r1ZQ3GI_IkMwOUOqADg8C0SLJgQ7AduTnwC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891107603</pqid></control><display><type>article</type><title>Learning Kernel Extended Dictionary for Face Recognition</title><source>IEEE/IET Electronic Library</source><creator>Huang, Ke-Kun ; Dai, Dao-Qing ; Ren, Chuan-Xian ; Lai, Zhao-Rong</creator><creatorcontrib>Huang, Ke-Kun ; Dai, Dao-Qing ; Ren, Chuan-Xian ; Lai, Zhao-Rong</creatorcontrib><description>A sparse representation classifier (SRC) and a kernel discriminant analysis (KDA) are two successful methods for face recognition. An SRC is good at dealing with occlusion, while a KDA does well in suppressing intraclass variations. In this paper, we propose kernel extended dictionary (KED) for face recognition, which provides an efficient way for combining KDA and SRC. We first learn several kernel principal components of occlusion variations as an occlusion model, which can represent the possible occlusion variations efficiently. Then, the occlusion model is projected by KDA to get the KED, which can be computed via the same kernel trick as new testing samples. Finally, we use structured SRC for classification, which is fast as only a small number of atoms are appended to the basic dictionary, and the feature dimension is low. We also extend KED to multikernel space to fuse different types of features at kernel level. Experiments are done on several large-scale data sets, demonstrating that not only does KED get impressive results for nonoccluded samples, but it also handles the occlusion well without overfitting, even with a single gallery sample per subject.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2016.2522431</identifier><identifier>PMID: 26890929</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Atomic properties ; Dictionaries ; Discriminant analysis ; Face ; Face occlusion ; Face recognition ; Feature extraction ; Kernel ; kernel discriminant analysis (KDA) ; Kernels ; Occlusion ; Pattern recognition ; Probes ; sparse representation classifier (SRC) ; Training ; Variation</subject><ispartof>IEEE transaction on neural networks and learning systems, 2017-05, Vol.28 (5), p.1082-1094</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-dfbb95acacb2b86df3d252e269c75805db1b474a7f306c7868fabdfbc9844d873</citedby><cites>FETCH-LOGICAL-c351t-dfbb95acacb2b86df3d252e269c75805db1b474a7f306c7868fabdfbc9844d873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7407377$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7407377$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26890929$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Ke-Kun</creatorcontrib><creatorcontrib>Dai, Dao-Qing</creatorcontrib><creatorcontrib>Ren, Chuan-Xian</creatorcontrib><creatorcontrib>Lai, Zhao-Rong</creatorcontrib><title>Learning Kernel Extended Dictionary for Face Recognition</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>A sparse representation classifier (SRC) and a kernel discriminant analysis (KDA) are two successful methods for face recognition. An SRC is good at dealing with occlusion, while a KDA does well in suppressing intraclass variations. In this paper, we propose kernel extended dictionary (KED) for face recognition, which provides an efficient way for combining KDA and SRC. We first learn several kernel principal components of occlusion variations as an occlusion model, which can represent the possible occlusion variations efficiently. Then, the occlusion model is projected by KDA to get the KED, which can be computed via the same kernel trick as new testing samples. Finally, we use structured SRC for classification, which is fast as only a small number of atoms are appended to the basic dictionary, and the feature dimension is low. We also extend KED to multikernel space to fuse different types of features at kernel level. Experiments are done on several large-scale data sets, demonstrating that not only does KED get impressive results for nonoccluded samples, but it also handles the occlusion well without overfitting, even with a single gallery sample per subject.</description><subject>Atomic properties</subject><subject>Dictionaries</subject><subject>Discriminant analysis</subject><subject>Face</subject><subject>Face occlusion</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Kernel</subject><subject>kernel discriminant analysis (KDA)</subject><subject>Kernels</subject><subject>Occlusion</subject><subject>Pattern recognition</subject><subject>Probes</subject><subject>sparse representation classifier (SRC)</subject><subject>Training</subject><subject>Variation</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkF1LwzAUhoMoTub-gIIUvPGmMx9tPi5lbiqWCTrBu5Kkp6OjS2fagv57Mzd3YW4STp73cM6D0AXBY0Kwul3M59nbmGLCxzSlNGHkCJ1RwmlMmZTHh7f4GKBR265wOBynPFGnaEC5VFhRdYZkBtq7yi2jZ_AO6mj61YEroIjuK9tVjdP-OyobH820hegVbLN01bZ-jk5KXbcw2t9D9D6bLiaPcfby8DS5y2LLUtLFRWmMSrXV1lAjeVGyIowLlCsrUonTwhCTiESLkmFuheSy1CaErJJJUkjBhuhm13fjm88e2i5fV62FutYOmr7NiaScp0SmNKDX_9BV03sXpguUCtYExyxQdEdZ37SthzLf-God1swJzrdq81-1-VZtvlcbQlf71r1ZQ3GI_IkMwOUOqADg8C0SLJgQ7AduTnwC</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Huang, Ke-Kun</creator><creator>Dai, Dao-Qing</creator><creator>Ren, Chuan-Xian</creator><creator>Lai, Zhao-Rong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20170501</creationdate><title>Learning Kernel Extended Dictionary for Face Recognition</title><author>Huang, Ke-Kun ; Dai, Dao-Qing ; Ren, Chuan-Xian ; Lai, Zhao-Rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-dfbb95acacb2b86df3d252e269c75805db1b474a7f306c7868fabdfbc9844d873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Atomic properties</topic><topic>Dictionaries</topic><topic>Discriminant analysis</topic><topic>Face</topic><topic>Face occlusion</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Kernel</topic><topic>kernel discriminant analysis (KDA)</topic><topic>Kernels</topic><topic>Occlusion</topic><topic>Pattern recognition</topic><topic>Probes</topic><topic>sparse representation classifier (SRC)</topic><topic>Training</topic><topic>Variation</topic><toplevel>online_resources</toplevel><creatorcontrib>Huang, Ke-Kun</creatorcontrib><creatorcontrib>Dai, Dao-Qing</creatorcontrib><creatorcontrib>Ren, Chuan-Xian</creatorcontrib><creatorcontrib>Lai, Zhao-Rong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Ke-Kun</au><au>Dai, Dao-Qing</au><au>Ren, Chuan-Xian</au><au>Lai, Zhao-Rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Kernel Extended Dictionary for Face Recognition</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2017-05-01</date><risdate>2017</risdate><volume>28</volume><issue>5</issue><spage>1082</spage><epage>1094</epage><pages>1082-1094</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>A sparse representation classifier (SRC) and a kernel discriminant analysis (KDA) are two successful methods for face recognition. An SRC is good at dealing with occlusion, while a KDA does well in suppressing intraclass variations. In this paper, we propose kernel extended dictionary (KED) for face recognition, which provides an efficient way for combining KDA and SRC. We first learn several kernel principal components of occlusion variations as an occlusion model, which can represent the possible occlusion variations efficiently. Then, the occlusion model is projected by KDA to get the KED, which can be computed via the same kernel trick as new testing samples. Finally, we use structured SRC for classification, which is fast as only a small number of atoms are appended to the basic dictionary, and the feature dimension is low. We also extend KED to multikernel space to fuse different types of features at kernel level. Experiments are done on several large-scale data sets, demonstrating that not only does KED get impressive results for nonoccluded samples, but it also handles the occlusion well without overfitting, even with a single gallery sample per subject.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26890929</pmid><doi>10.1109/TNNLS.2016.2522431</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2017-05, Vol.28 (5), p.1082-1094
issn 2162-237X
2162-2388
language eng
recordid cdi_crossref_primary_10_1109_TNNLS_2016_2522431
source IEEE/IET Electronic Library
subjects Atomic properties
Dictionaries
Discriminant analysis
Face
Face occlusion
Face recognition
Feature extraction
Kernel
kernel discriminant analysis (KDA)
Kernels
Occlusion
Pattern recognition
Probes
sparse representation classifier (SRC)
Training
Variation
title Learning Kernel Extended Dictionary for Face Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A21%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Kernel%20Extended%20Dictionary%20for%20Face%20Recognition&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Huang,%20Ke-Kun&rft.date=2017-05-01&rft.volume=28&rft.issue=5&rft.spage=1082&rft.epage=1094&rft.pages=1082-1094&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2016.2522431&rft_dat=%3Cproquest_RIE%3E1891107603%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1891107603&rft_id=info:pmid/26890929&rft_ieee_id=7407377&rfr_iscdi=true